Have a personal or library account? Click to login
An Enhanced Measurement of Epicardial Fat Segmentation and Severity Classification using Modified U-Net and FOA-guided XGBoost Cover

An Enhanced Measurement of Epicardial Fat Segmentation and Severity Classification using Modified U-Net and FOA-guided XGBoost

Open Access
|Jun 2025

References

  1. Goeller, M., Achenbach, S., Marwan, M., Doris, M. K., Cadet, S., Commandeur, F., Chen, X., Slomka, P. J., Gransar, H., Cao, J. J., Wong, N. D., Albrecht, M. H., Rozanski, A., Tamarappoo, B. K., Berman, D. S., Dey, D. (2018). Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects. Journal of Cardiovascular Computed Tomography, 12 (1), 67–73. https://doi.org/10.1016/j.jcct.2017.11.007
  2. Mahabadi, A. A., Lehmann, N., Kälsch, H., Bauer, M., Dykun, I., Kara, K., Moebus, S., Jöckel, K. H., Erbel, R., Möhlenkamp, S. (2014). Association of epicardial adipose tissue and left atrial size on non-contrast CT with atrial fibrillation: The Heinz Nixdorf Recall Study. European Heart Journal Cardiovascular Imaging, 15 (8), 863–869. https://doi.org/10.1093/ehjci/jeu006
  3. Konwerski, M., Gąsecka, A., Opolski, G., Grabowski, M., Mazurek, T. (2022). Role of epicardial adipose tissue in cardiovascular diseases: A review. Biology, 11 (3), 355. https://doi.org/10.3390/biology11030355
  4. Davidovich, D., Gastaldelli, A., Sicari, R. (2013). Imaging cardiac fat. European Heart Journal - Cardiovascular Imaging, 14 (7), 625–630. https://doi.org/10.1093/ehjci/jet045
  5. Greco, F., Salgado, R., Van Hecke, W., Del Buono, R., Parizel, P. M., Mallio, C. A. (2022). Epicardial and pericardial fat analysis on CT images and artificial intelligence: A literature review. Quantitative Imaging in Medicine and Surgery, 12 (3), 2075–2089. https://doi.org/10.21037/qims-21-945
  6. Hoori, A., Hu, T., Lee, J., Al-Kindi, S., Rajagopalan, S., Wilson, D. L. (2022). Deep learning segmentation and quantification method for assessing epicardial adipose tissue in CT calcium score scans. Scientific Reports, 12, 2276. https://doi.org/10.1038/s41598-022-06351-z
  7. Liu, Y., Zhou, J., Liu, L., Zhan, Z., Hu, Y., Fu, Y., Duan, H. (2022). FCP-Net: A feature-compression-pyramid network guided by game-theoretic interactions for medical image segmentation. IEEE Transactions on Medical Imaging, 41 (6), 1482–1496. https://doi.org/10.1109/TMI.2021.3140120
  8. Wang, G., Li, W., Zuluaga, M. A., Pratt, R., Patel, P. A., Aertsen, M., Doel, T., David, A. L., Deprest, J., Ourselin, S., Vercauteren, T. (2018). Interactive medical image segmentation using deep learning with image-specific fine-tuning. IEEE Transactions on Medical Imaging, 37 (7), 1562–1573. https://doi.org/10.1109/TMI.2018.2791721
  9. Causey, J., Stubblefield, J., Qualls, J., Fowler, J., Cai, L., Walker, K., Guan, Y., Huang, X. (2022). An ensemble of U-Net models for kidney tumor segmentation with CT images. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19 (3), 1387–1392. https://doi.org/10.1109/TCBB.2021.3085608
  10. Dolz, J., Gopinath, K., Yuan, J., Lombaert, H., Desrosiers, C., Ben Ayed, I. (2019). HyperDense-Net: A hyper-densely connected CNN for multi-modal image segmentation. IEEE Transactions on Medical Imaging, 38 (5), 1116–1126. https://doi.org/10.1109/TMI.2018.2878669
  11. Ling, Y., Wang, Y., Dai, W., Yu, J., Liang, P., Kong, D. (2024). MTANet: Multi-task attention network for automatic medical image segmentation and classification. IEEE Transactions on Medical Imaging, 43 (2), 674–685. https://doi.org/10.1109/TMI.2023.3317088
  12. Zhu, M., Chen, Z., Yuan, Y. (2021). DSI-Net: Deep synergistic interaction network for joint classification and segmentation with endoscope images. IEEE Transactions on Medical Imaging, 40 (12), 3315–3325. https://doi.org/10.1109/TMI.2021.3083586
  13. Celaya, A., Actor, J. A., Muthusivarajan, R., Gates, E., Chung, C., Schellingerhout, D., Riviere, B., Fuentes, D. (2023). PocketNet: A smaller neural network for medical image analysis. IEEE Transactions on Medical Imaging, 42 (4), 1172–1184. https://doi.org/10.1109/TMI.2022.3224873
  14. Lee, M. C. H., Petersen, K., Pawlowski, N., Glocker, B., Schaap, M. (2019). TeTrIS: Template transformer networks for image segmentation with shape priors. IEEE Transactions on Medical Imaging, 38 (11), 2596–2606. https://doi.org/10.1109/TMI.2019.2905990
  15. Oktay, O., Ferrante, E., Kamnitsas, K., Heinrich, M., Bai, W., Caballero, J., Cook, S. A., de Marvao, A., Dawes, T., O‘Regan, D. P., Kainz, B., Glocker, B., Rueckert, D. (2018). Anatomically constrained neural networks (ACNNs): Application to cardiac image enhancement and segmentation. IEEE Transactions on Medical Imaging, 37 (2), 384–395. https://doi.org/10.1109/TMI.2017.2743464
  16. Kazemi, A., Keshtkar, A., Rashidi, S., Aslanabadi, N., Khodadad, B., Esmaeili, M. (2020). Automated segmentation of cardiac fats based on extraction of textural features from non-contrast CT images. In 2020 25th International Computer Conference, Computer Society of Iran (CSICC). IEEE. https://doi.org/10.1109/CSICC49403.2020.9050072
  17. Zhang, Q., Zhou, J., Zhang, B., Jia, W., Wu, E. (2020). Automatic epicardial fat segmentation and quantification of CT scans using dual U-Nets with a morphological processing layer. IEEE Access, 8, 128032–128041. https://doi.org/10.1109/ACCESS.2020.3008190
  18. Zlokolica, V., Velicki, L., Janev, M., Mitrinovic, D., Babin, D., Ralevic, N., Cemerlic-Adic, N., Obradovic, R., Galic, I. (2014). Epicardial fat registration by local adaptive morphology-thresholding based 2D segmentation. In Proceedings ELMAR-2014. IEEE. https://doi.org/10.1109/ELMAR.2014.6923347
  19. Zhao, F., Hu, H., Chen, Y., Liang, J., He, X., Hou, Y. (2019). Accurate segmentation of heart volume in CTA with landmark-based registration and fully convolutional network. IEEE Access, 7, 57881–57893. https://doi.org/10.1109/ACCESS.2019.2912467
Language: English
Page range: 93 - 99
Submitted on: Jun 23, 2024
|
Accepted on: Apr 15, 2025
|
Published on: Jun 7, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2025 K Rajalakshmi, S Palanivel Rajan, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.