References
- Goeller, M., Achenbach, S., Marwan, M., Doris, M. K., Cadet, S., Commandeur, F., Chen, X., Slomka, P. J., Gransar, H., Cao, J. J., Wong, N. D., Albrecht, M. H., Rozanski, A., Tamarappoo, B. K., Berman, D. S., Dey, D. (2018). Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects. Journal of Cardiovascular Computed Tomography, 12 (1), 67–73.
https://doi.org/10.1016/j.jcct.2017.11.007 - Mahabadi, A. A., Lehmann, N., Kälsch, H., Bauer, M., Dykun, I., Kara, K., Moebus, S., Jöckel, K. H., Erbel, R., Möhlenkamp, S. (2014). Association of epicardial adipose tissue and left atrial size on non-contrast CT with atrial fibrillation: The Heinz Nixdorf Recall Study. European Heart Journal Cardiovascular Imaging, 15 (8), 863–869.
https://doi.org/10.1093/ehjci/jeu006 - Konwerski, M., Gąsecka, A., Opolski, G., Grabowski, M., Mazurek, T. (2022). Role of epicardial adipose tissue in cardiovascular diseases: A review. Biology, 11 (3), 355.
https://doi.org/10.3390/biology11030355 - Davidovich, D., Gastaldelli, A., Sicari, R. (2013). Imaging cardiac fat. European Heart Journal - Cardiovascular Imaging, 14 (7), 625–630.
https://doi.org/10.1093/ehjci/jet045 - Greco, F., Salgado, R., Van Hecke, W., Del Buono, R., Parizel, P. M., Mallio, C. A. (2022). Epicardial and pericardial fat analysis on CT images and artificial intelligence: A literature review. Quantitative Imaging in Medicine and Surgery, 12 (3), 2075–2089.
https://doi.org/10.21037/qims-21-945 - Hoori, A., Hu, T., Lee, J., Al-Kindi, S., Rajagopalan, S., Wilson, D. L. (2022). Deep learning segmentation and quantification method for assessing epicardial adipose tissue in CT calcium score scans. Scientific Reports, 12, 2276.
https://doi.org/10.1038/s41598-022-06351-z - Liu, Y., Zhou, J., Liu, L., Zhan, Z., Hu, Y., Fu, Y., Duan, H. (2022). FCP-Net: A feature-compression-pyramid network guided by game-theoretic interactions for medical image segmentation. IEEE Transactions on Medical Imaging, 41 (6), 1482–1496.
https://doi.org/10.1109/TMI.2021.3140120 - Wang, G., Li, W., Zuluaga, M. A., Pratt, R., Patel, P. A., Aertsen, M., Doel, T., David, A. L., Deprest, J., Ourselin, S., Vercauteren, T. (2018). Interactive medical image segmentation using deep learning with image-specific fine-tuning. IEEE Transactions on Medical Imaging, 37 (7), 1562–1573.
https://doi.org/10.1109/TMI.2018.2791721 - Causey, J., Stubblefield, J., Qualls, J., Fowler, J., Cai, L., Walker, K., Guan, Y., Huang, X. (2022). An ensemble of U-Net models for kidney tumor segmentation with CT images. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19 (3), 1387–1392.
https://doi.org/10.1109/TCBB.2021.3085608 - Dolz, J., Gopinath, K., Yuan, J., Lombaert, H., Desrosiers, C., Ben Ayed, I. (2019). HyperDense-Net: A hyper-densely connected CNN for multi-modal image segmentation. IEEE Transactions on Medical Imaging, 38 (5), 1116–1126.
https://doi.org/10.1109/TMI.2018.2878669 - Ling, Y., Wang, Y., Dai, W., Yu, J., Liang, P., Kong, D. (2024). MTANet: Multi-task attention network for automatic medical image segmentation and classification. IEEE Transactions on Medical Imaging, 43 (2), 674–685.
https://doi.org/10.1109/TMI.2023.3317088 - Zhu, M., Chen, Z., Yuan, Y. (2021). DSI-Net: Deep synergistic interaction network for joint classification and segmentation with endoscope images. IEEE Transactions on Medical Imaging, 40 (12), 3315–3325.
https://doi.org/10.1109/TMI.2021.3083586 - Celaya, A., Actor, J. A., Muthusivarajan, R., Gates, E., Chung, C., Schellingerhout, D., Riviere, B., Fuentes, D. (2023). PocketNet: A smaller neural network for medical image analysis. IEEE Transactions on Medical Imaging, 42 (4), 1172–1184.
https://doi.org/10.1109/TMI.2022.3224873 - Lee, M. C. H., Petersen, K., Pawlowski, N., Glocker, B., Schaap, M. (2019). TeTrIS: Template transformer networks for image segmentation with shape priors. IEEE Transactions on Medical Imaging, 38 (11), 2596–2606.
https://doi.org/10.1109/TMI.2019.2905990 - Oktay, O., Ferrante, E., Kamnitsas, K., Heinrich, M., Bai, W., Caballero, J., Cook, S. A., de Marvao, A., Dawes, T., O‘Regan, D. P., Kainz, B., Glocker, B., Rueckert, D. (2018). Anatomically constrained neural networks (ACNNs): Application to cardiac image enhancement and segmentation. IEEE Transactions on Medical Imaging, 37 (2), 384–395.
https://doi.org/10.1109/TMI.2017.2743464 - Kazemi, A., Keshtkar, A., Rashidi, S., Aslanabadi, N., Khodadad, B., Esmaeili, M. (2020). Automated segmentation of cardiac fats based on extraction of textural features from non-contrast CT images. In 2020 25th International Computer Conference, Computer Society of Iran (CSICC). IEEE.
https://doi.org/10.1109/CSICC49403.2020.9050072 - Zhang, Q., Zhou, J., Zhang, B., Jia, W., Wu, E. (2020). Automatic epicardial fat segmentation and quantification of CT scans using dual U-Nets with a morphological processing layer. IEEE Access, 8, 128032–128041.
https://doi.org/10.1109/ACCESS.2020.3008190 - Zlokolica, V., Velicki, L., Janev, M., Mitrinovic, D., Babin, D., Ralevic, N., Cemerlic-Adic, N., Obradovic, R., Galic, I. (2014). Epicardial fat registration by local adaptive morphology-thresholding based 2D segmentation. In Proceedings ELMAR-2014. IEEE.
https://doi.org/10.1109/ELMAR.2014.6923347 - Zhao, F., Hu, H., Chen, Y., Liang, J., He, X., Hou, Y. (2019). Accurate segmentation of heart volume in CTA with landmark-based registration and fully convolutional network. IEEE Access, 7, 57881–57893.
https://doi.org/10.1109/ACCESS.2019.2912467