Have a personal or library account? Click to login
Experimental Platform for Investigation of Low-Frequency Magnetic Field Effects on Cells Cover

Experimental Platform for Investigation of Low-Frequency Magnetic Field Effects on Cells

Open Access
|Jun 2025

References

  1. Tota, M., Jonderko, L., Witek, J., Novickij, V., Kulbacka, J. (2024). Cellular and molecular effects of magnetic fields. International Journal of Molecular Sciences, 25 (16), 8973. https://doi.org/10.3390/ijms25168973
  2. Lee, H. C., Hong, M.-N., Jung, S. H., Kim, B. C., Suh, Y. J., Ko, Y.-G., Lee, Y.-S., Lee, B.-Y., Cho, Y.-G., Myung, S.-H., Lee, J.-S. (2015). Effect of extremely low frequency magnetic fields on cell proliferation and gene expression. Bioelectromagnetics, 36 (7), 506–516. https://doi.org/10.1002/bem.21932
  3. Zhang, M., Li, X., Bai, L., Uchida, K., Bai, W., Wu, B., Xu, W., Zhu, H., Huang, H. (2013). Effects of low frequency electromagnetic field on proliferation of human epidermal stem cells: An in vitro study. Bioelectromagnetics, 34 (1), 74–80. https://doi.org/10.1002/bem.21747
  4. Pasi, F., Sanna, S., Paolini, A., Alquati, M., Lascialfari, A., Corti, M. E., Di Liberto, R., Cialdai, F., Monici, M., Nano, R. (2016). Effects of extremely low-frequency magnetotherapy on proliferation of human dermal fibroblasts. Electromagnetic Biology and Medicine, 35 (4), 343–352. https://doi.org/10.3109/15368378.2016.1138123
  5. Radil, R., Carnecka, L., Judakova, Z., Pobocikova, I., Bajtos, M., Janousek, L. (2024). Exploring non-thermal mechanisms of biological reactions to extremely low-frequency magnetic field exposure. Applied Sciences, 14 (20), 9409. https://doi.org/10.3390/app14209409
  6. Lai, H. (2021). Genetic effects of non-ionizing electromagnetic fields. Electromagnetic Biology and Medicine, 40 (2), 264–273. https://doi.org/10.1080/15368378.2021.1881866
  7. Duong, C. N., Kim, J. Y. (2016). Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca2+ and ROS. International Journal of Radiation Biology, 92 (4), 195–201. https://doi.org/10.3109/09553002.2016.1136851
  8. Caliogna, L., Medetti, M., Bina, V., Brancato, A. M., Castelli, A., Jannelli, E., Ivone, A., Gastaldi, G., Annunziata, S., Mosconi, M., Pasta, G. (2021). Pulsed electromagnetic fields in bone healing: Molecular pathways and clinical applications. International Journal of Molecular Sciences, 22 (14), 7403. https://doi.org/10.3390/ijms22147403
  9. Gualdi, G., Costantini, E., Reale, M., Amerio, P. (2021). Wound repair and extremely low frequency-electromagnetic field: Insight from in vitro study and potential clinical application. International Journal of Molecular Sciences, 22 (9), 5037. https://doi.org/10.3390/ijms22095037
  10. Sun, J., Tong, Y., Jia, Y., Jia, X., Wang, H., Chen, Y., Wu, J. Jin, W., Ma, Z., Cao, K., Li, X., Chen, Z., Yang, G. (2023). Effects of extremely low frequency electromagnetic fields on the tumor cell inhibition and the possible mechanism. Scientific Reports, 13 (1), 6989. https://doi.org/10.1038/s41598-023-34144-5
  11. Xu, A., Wang, Q., Lin, T. (2020). Low-frequency magnetic fields (LF-MFs) inhibit proliferation by triggering apoptosis and altering cell cycle distribution in breast cancer cells. International Journal of Molecular Sciences, 21 (8), 2952. https://doi.org/10.3390/ijms21082952
  12. Wang, S., Zhou, X., Huang, B., Wang, Z., Zhou, L., Wang, M., Yu, L., Jiang, H. (2016). Noninvasive low-frequency electromagnetic stimulation of the left stellate ganglion reduces myocardial infarction-induced ventricular arrhythmia. Scientific Reports, 6 (1), 30783. https://doi.org/10.1038/srep30783
  13. Rick, O., von Hehn, U., Mikus, E., Dertinger, H., Geiger, G. (2017). Magnetic field therapy in patients with cytostatics-induced polyneuropathy: A prospective randomized placebo-controlled phase-III study. Bioelectromagnetics, 38 (2), 85–94. https://doi.org/10.1002/bem.22005
  14. Brabant, C., Geerinck, A., Beaudart, C., Tirelli, E., Geuzaine, C., Bruyere, O. (2023). Exposure to magnetic fields and childhood leukemia: A systematic review and meta-analysis of case-control and cohort studies. Reviews on Environmental Health, 38 (2), 229–253. https://doi.org/10.1515/reveh-2021-0112
  15. Baaken, D., Dechent, D., Blettner, M., Drießen, S., Merzenich, H. (2021). Occupational exposure to extremely low-frequency magnetic fields and risk of amyotrophic lateral sclerosis: Results of a feasibility study for a pooled analysis of original data. Bioelectromagnetics, 42 (4), 271–283. https://doi.org/10.1002/bem.22335
  16. Dasdag, O., Adalier, N., Dasdag, S. (2020). Electromagnetic radiation and Alzheimer's disease. Biotechnology & Biotechnological Equipment, 34 (1), 1087–1094. https://doi.org/10.1080/13102818.2020.1820378
  17. Tian, H., Zhu, H., Gao, C., Shi, M., Yang, D., Jin, M., Wang, F., Sui, X. (2023). System-level biological effects of extremely low-frequency electromagnetic fields: An in vivo experimental review. Frontiers in Neuroscience, 17, 1247021. https://doi.org/10.3389/fnins.2023.1247021
  18. Sincak, M., Luptakova, A., Matusikova, I., Jandacka, P., Sedlakova-Kadukova, J. (2023). Application of a magnetic field to enhance the environmental sustainability and efficiency of microbial and plant biotechnological processes. Sustainability, 15 (19), 14459. https://doi.org/10.3390/su151914459
  19. Liu, J., Wang, D., Wang, H., Yang, N., Hou, J., Lv, X., Gong, L. (2024). Low frequency magnetic field assisted production of acidic protease by Aspergillus niger. Archives of Microbiology, 206, 273. https://doi.org/10.1007/s00203-024-04004-5
  20. Bodewein, L., Schmiedchen, K., Dechent, D., Stunder, D., Graefrath, D., Winter, L., Kraus, T., Driessen, S. (2019). Systematic review on the biological effects of electric, magnetic and electromagnetic fields in the intermediate frequency range (300 Hz to 1 MHz). Environmental Research, 171, 247–259. https://doi.org/10.1016/j.envres.2019.01.015
  21. Buchachenko, A. (2016). Why magnetic and electromagnetic effects in biology are irreproducible and contradictory? Bioelectromagnetics, 37 (1), 1–13. https://doi.org/10.1002/bem.21947
  22. International Commission on Non-Ionizing Radiation Protection (ICNIRP). (2025). Gaps in knowledge relevant to the “ICNIRP guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (100 kHz TO 300 GHz)”. Health Physics, 182 (2), 190–202. https://doi.org/10.1097/HP.0000000000001944
  23. Makinistian, L., Vives, L. (2025). Devices, facilities, and shielding for biological experiments with static and extremely low frequency magnetic fields. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 9 (2), 141–156. https://doi.org/10.1109/JERM.2024.3419232
  24. Ronniger, M., Aguida, B., Stacke, C., Chen, Y., Ehnert, S., Erdmann, N., Eschenburg, G., Falldorf, K., Pooam, M., Wing, A., Ahmad, M. (2022). A novel method to achieve precision and reproducibility in exposure parameters for low-frequency pulsed magnetic fields in human cell cultures. Bioengineering, 9 (10), 595. https://doi.org/10.3390/bioengineering9100595
  25. Bereta, M., Teplan, M., Chafai, D. E., Radil, R., Cifra, M. (2021). Biological autoluminescence as a noninvasive monitoring tool for chemical and physical modulation of oxidation in yeast cell culture. Scientific Reports, 11, 328. https://doi.org/10.1038/s41598-020-79668-2
  26. Vu Viet, H., Teplan, M. (2023). Development of an experimental platform for the measurement of biological response of low-frequency magnetic fields. In 2023 14th International Conference on Measurement. IEEE, 113–116. https://doi.org/10.23919/MEASUREMENT59122.2023.10164326
  27. Bajla, I., Teplan, M. (2022). Yeast cell detection in color microscopic images using ROC-optimized decoloring and segmentation. IET Image Processing, 16 (2), 606–621. https://doi.org/10.1049/ipr2.12376
  28. Bereta, M., Teplan, M., Zakar, T., Vuviet, H., Cifra, M., Chafai, D. E. (2024). Biological autoluminescence enables effective monitoring of yeast cell electroporation. Biotechnology Journal, 19 (4), 2300475. https://doi.org/10.1002/biot.202300475
  29. Novák J., Strašák, L., Fojt, L., Slaninová, I., Vetterl, V. (2007). Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae. Bioelectrochemistry, 70 (1), 115–121. https://doi.org/10.1016/j.bioelechem.2006.03.029
  30. An G.-Z., Xu, H., Zhou, Y., Du, L., Miao, X., Jiang, D.-P., Li, K.-C., Guo, G.-Z., Zhang, C., Ding, G.-R. (2015). Effects of long-term 50Hz power-line frequency electromagnetic field on cell behavior in Balb/c 3T3 cells. PLoS One, 10 (2), e0117672. https://doi.org/10.1371/journal.pone.0117672
  31. Song K., Im, S. H., Yoon, Y. J., Kim, H. M., Lee, H. J., Park, G. S. (2018). A 60 Hz uniform electromagnetic field promotes human cell proliferation by decreasing intracellular reactive oxygen species levels. PLoS One, 13 (7), e0199753. https://doi.org/10.1371/journal.pone.0199753
  32. Jones, R. A., Walleczek, J., Adey, W. R. (1996). Mechanical vibration in “double-wound” magnetic field exposure coils. Bioelectromagnetics, 17 (6), 516–518. https://doi.org/10.1002/(SICI)1521-186X(1996)17:6%3C516::AID-BEM14%3E3.0.CO;2-I
Language: English
Page range: 83 - 92
Submitted on: Feb 18, 2025
|
Accepted on: May 6, 2025
|
Published on: Jun 7, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2025 Hoang Vu Viet, Lubomír Kremnický, Martin Bereta, Michal Teplan, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.