References
- Tota, M., Jonderko, L., Witek, J., Novickij, V., Kulbacka, J. (2024). Cellular and molecular effects of magnetic fields. International Journal of Molecular Sciences, 25 (16), 8973.
https://doi.org/10.3390/ijms25168973 - Lee, H. C., Hong, M.-N., Jung, S. H., Kim, B. C., Suh, Y. J., Ko, Y.-G., Lee, Y.-S., Lee, B.-Y., Cho, Y.-G., Myung, S.-H., Lee, J.-S. (2015). Effect of extremely low frequency magnetic fields on cell proliferation and gene expression. Bioelectromagnetics, 36 (7), 506–516.
https://doi.org/10.1002/bem.21932 - Zhang, M., Li, X., Bai, L., Uchida, K., Bai, W., Wu, B., Xu, W., Zhu, H., Huang, H. (2013). Effects of low frequency electromagnetic field on proliferation of human epidermal stem cells: An in vitro study. Bioelectromagnetics, 34 (1), 74–80.
https://doi.org/10.1002/bem.21747 - Pasi, F., Sanna, S., Paolini, A., Alquati, M., Lascialfari, A., Corti, M. E., Di Liberto, R., Cialdai, F., Monici, M., Nano, R. (2016). Effects of extremely low-frequency magnetotherapy on proliferation of human dermal fibroblasts. Electromagnetic Biology and Medicine, 35 (4), 343–352.
https://doi.org/10.3109/15368378.2016.1138123 - Radil, R., Carnecka, L., Judakova, Z., Pobocikova, I., Bajtos, M., Janousek, L. (2024). Exploring non-thermal mechanisms of biological reactions to extremely low-frequency magnetic field exposure. Applied Sciences, 14 (20), 9409.
https://doi.org/10.3390/app14209409 - Lai, H. (2021). Genetic effects of non-ionizing electromagnetic fields. Electromagnetic Biology and Medicine, 40 (2), 264–273.
https://doi.org/10.1080/15368378.2021.1881866 - Duong, C. N., Kim, J. Y. (2016). Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca2+ and ROS. International Journal of Radiation Biology, 92 (4), 195–201.
https://doi.org/10.3109/09553002.2016.1136851 - Caliogna, L., Medetti, M., Bina, V., Brancato, A. M., Castelli, A., Jannelli, E., Ivone, A., Gastaldi, G., Annunziata, S., Mosconi, M., Pasta, G. (2021). Pulsed electromagnetic fields in bone healing: Molecular pathways and clinical applications. International Journal of Molecular Sciences, 22 (14), 7403.
https://doi.org/10.3390/ijms22147403 - Gualdi, G., Costantini, E., Reale, M., Amerio, P. (2021). Wound repair and extremely low frequency-electromagnetic field: Insight from in vitro study and potential clinical application. International Journal of Molecular Sciences, 22 (9), 5037.
https://doi.org/10.3390/ijms22095037 - Sun, J., Tong, Y., Jia, Y., Jia, X., Wang, H., Chen, Y., Wu, J. Jin, W., Ma, Z., Cao, K., Li, X., Chen, Z., Yang, G. (2023). Effects of extremely low frequency electromagnetic fields on the tumor cell inhibition and the possible mechanism. Scientific Reports, 13 (1), 6989.
https://doi.org/10.1038/s41598-023-34144-5 - Xu, A., Wang, Q., Lin, T. (2020). Low-frequency magnetic fields (LF-MFs) inhibit proliferation by triggering apoptosis and altering cell cycle distribution in breast cancer cells. International Journal of Molecular Sciences, 21 (8), 2952.
https://doi.org/10.3390/ijms21082952 - Wang, S., Zhou, X., Huang, B., Wang, Z., Zhou, L., Wang, M., Yu, L., Jiang, H. (2016). Noninvasive low-frequency electromagnetic stimulation of the left stellate ganglion reduces myocardial infarction-induced ventricular arrhythmia. Scientific Reports, 6 (1), 30783.
https://doi.org/10.1038/srep30783 - Rick, O., von Hehn, U., Mikus, E., Dertinger, H., Geiger, G. (2017). Magnetic field therapy in patients with cytostatics-induced polyneuropathy: A prospective randomized placebo-controlled phase-III study. Bioelectromagnetics, 38 (2), 85–94.
https://doi.org/10.1002/bem.22005 - Brabant, C., Geerinck, A., Beaudart, C., Tirelli, E., Geuzaine, C., Bruyere, O. (2023). Exposure to magnetic fields and childhood leukemia: A systematic review and meta-analysis of case-control and cohort studies. Reviews on Environmental Health, 38 (2), 229–253.
https://doi.org/10.1515/reveh-2021-0112 - Baaken, D., Dechent, D., Blettner, M., Drießen, S., Merzenich, H. (2021). Occupational exposure to extremely low-frequency magnetic fields and risk of amyotrophic lateral sclerosis: Results of a feasibility study for a pooled analysis of original data. Bioelectromagnetics, 42 (4), 271–283.
https://doi.org/10.1002/bem.22335 - Dasdag, O., Adalier, N., Dasdag, S. (2020). Electromagnetic radiation and Alzheimer's disease. Biotechnology & Biotechnological Equipment, 34 (1), 1087–1094.
https://doi.org/10.1080/13102818.2020.1820378 - Tian, H., Zhu, H., Gao, C., Shi, M., Yang, D., Jin, M., Wang, F., Sui, X. (2023). System-level biological effects of extremely low-frequency electromagnetic fields: An in vivo experimental review. Frontiers in Neuroscience, 17, 1247021.
https://doi.org/10.3389/fnins.2023.1247021 - Sincak, M., Luptakova, A., Matusikova, I., Jandacka, P., Sedlakova-Kadukova, J. (2023). Application of a magnetic field to enhance the environmental sustainability and efficiency of microbial and plant biotechnological processes. Sustainability, 15 (19), 14459.
https://doi.org/10.3390/su151914459 - Liu, J., Wang, D., Wang, H., Yang, N., Hou, J., Lv, X., Gong, L. (2024). Low frequency magnetic field assisted production of acidic protease by Aspergillus niger. Archives of Microbiology, 206, 273.
https://doi.org/10.1007/s00203-024-04004-5 - Bodewein, L., Schmiedchen, K., Dechent, D., Stunder, D., Graefrath, D., Winter, L., Kraus, T., Driessen, S. (2019). Systematic review on the biological effects of electric, magnetic and electromagnetic fields in the intermediate frequency range (300 Hz to 1 MHz). Environmental Research, 171, 247–259.
https://doi.org/10.1016/j.envres.2019.01.015 - Buchachenko, A. (2016). Why magnetic and electromagnetic effects in biology are irreproducible and contradictory? Bioelectromagnetics, 37 (1), 1–13.
https://doi.org/10.1002/bem.21947 - International Commission on Non-Ionizing Radiation Protection (ICNIRP). (2025). Gaps in knowledge relevant to the “ICNIRP guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (100 kHz TO 300 GHz)”. Health Physics, 182 (2), 190–202.
https://doi.org/10.1097/HP.0000000000001944 - Makinistian, L., Vives, L. (2025). Devices, facilities, and shielding for biological experiments with static and extremely low frequency magnetic fields. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 9 (2), 141–156.
https://doi.org/10.1109/JERM.2024.3419232 - Ronniger, M., Aguida, B., Stacke, C., Chen, Y., Ehnert, S., Erdmann, N., Eschenburg, G., Falldorf, K., Pooam, M., Wing, A., Ahmad, M. (2022). A novel method to achieve precision and reproducibility in exposure parameters for low-frequency pulsed magnetic fields in human cell cultures. Bioengineering, 9 (10), 595.
https://doi.org/10.3390/bioengineering9100595 - Bereta, M., Teplan, M., Chafai, D. E., Radil, R., Cifra, M. (2021). Biological autoluminescence as a noninvasive monitoring tool for chemical and physical modulation of oxidation in yeast cell culture. Scientific Reports, 11, 328.
https://doi.org/10.1038/s41598-020-79668-2 - Vu Viet, H., Teplan, M. (2023). Development of an experimental platform for the measurement of biological response of low-frequency magnetic fields. In 2023 14th International Conference on Measurement. IEEE, 113–116.
https://doi.org/10.23919/MEASUREMENT59122.2023.10164326 - Bajla, I., Teplan, M. (2022). Yeast cell detection in color microscopic images using ROC-optimized decoloring and segmentation. IET Image Processing, 16 (2), 606–621.
https://doi.org/10.1049/ipr2.12376 - Bereta, M., Teplan, M., Zakar, T., Vuviet, H., Cifra, M., Chafai, D. E. (2024). Biological autoluminescence enables effective monitoring of yeast cell electroporation. Biotechnology Journal, 19 (4), 2300475.
https://doi.org/10.1002/biot.202300475 - Novák J., Strašák, L., Fojt, L., Slaninová, I., Vetterl, V. (2007). Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae. Bioelectrochemistry, 70 (1), 115–121.
https://doi.org/10.1016/j.bioelechem.2006.03.029 - An G.-Z., Xu, H., Zhou, Y., Du, L., Miao, X., Jiang, D.-P., Li, K.-C., Guo, G.-Z., Zhang, C., Ding, G.-R. (2015). Effects of long-term 50Hz power-line frequency electromagnetic field on cell behavior in Balb/c 3T3 cells. PLoS One, 10 (2), e0117672.
https://doi.org/10.1371/journal.pone.0117672 - Song K., Im, S. H., Yoon, Y. J., Kim, H. M., Lee, H. J., Park, G. S. (2018). A 60 Hz uniform electromagnetic field promotes human cell proliferation by decreasing intracellular reactive oxygen species levels. PLoS One, 13 (7), e0199753.
https://doi.org/10.1371/journal.pone.0199753 - Jones, R. A., Walleczek, J., Adey, W. R. (1996). Mechanical vibration in “double-wound” magnetic field exposure coils. Bioelectromagnetics, 17 (6), 516–518.
https://doi.org/10.1002/(SICI)1521-186X(1996)17:6%3C516::AID-BEM14%3E3.0.CO;2-I