Have a personal or library account? Click to login
Measurement and Evaluation of Insulating Properties of a Modified Dielectric Surface using Plasma Discharge Cover

Measurement and Evaluation of Insulating Properties of a Modified Dielectric Surface using Plasma Discharge

Open Access
|Dec 2024

References

  1. Kikuchi, H. (2001). <em>Electrohydrodynamics in Dusty and Dirty Plasmas: Gravito-Electrodynamics and EHD</em>. Springer, 227. ISBN 978-0792368229.
  2. Fridman, A. (2008). <em>Plasma Chemistry</em>. Cambridge University Press. ISBN 978-0511546075. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1017/CBO9780511546075" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1017/CBO9780511546075</a>">https://doi.org/10.1017/CBO9780511546075</ext-link>
  3. Drexler, P., Fiala, P., Klima, M., Szabó, Z., Dostál, L., Kadlec, R., Pernica, R. (2021). Electromagnetic modeling of a plasma chamber: Theory and experiments. In <em>2021 Photonics &amp; Electromagnetics Research Symposium (PIERS)</em>. IEEE. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/PIERS53385.2021.9694874" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/PIERS53385.2021.9694874</a>">https://doi.org/10.1109/PIERS53385.2021.9694874</ext-link>
  4. Koinuma, H., Ohkubo, H., Hashimoto, T., Inomata, K., Shiraishi, T., Miyanaga, A., Hayashiet, S. (1992). Development and application of a microbeam plasma generator. <em>Applied Physics Letters</em>, 60 (7), 816-817. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1063/1.106527" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/1.106527</a>">https://doi.org/10.1063/1.106527</ext-link>
  5. Klíma, M., Zajíková, L., Jana, J. (1997). The perspectives of plasmachemical treatment on ancient artifacts. <em>Zeitschrift f</em><em>ü</em><em>r Schweizerische Arch</em><em>ä</em><em>ologie und Kunstgeschichte</em>, 54, 31-33. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://dx.doi.org/<a href="https://doi.org/10.5169/seals-169507" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5169/seals-169507</a>">http://dx.doi.org/<a href="https://doi.org/10.5169/seals-169507" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5169/seals-169507</a></ext-link>
  6. Raballand, V., Benedikt, J., von Keudell, A. (2008). Deposition of carbon-free silicon dioxide from pure hexamethyldisiloxane using an atmospheric microplasma jet. <em>Applied Physics Letters</em>, 92 (9), 091502. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1063/1.2844880" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/1.2844880</a>">https://doi.org/10.1063/1.2844880</ext-link>
  7. Schäfer, J., Fricke, K., Mika, F., Pokorná, Z., Zajíčková, L., Foest, R. (2017). Liquid assisted plasma enhanced chemical vapour deposition with a non-thermal plasma jet at atmospheric pressure. <em>Thin Solid Films</em>, 630, 71-78. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.tsf.2016.09.022" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tsf.2016.09.022</a>">https://doi.org/10.1016/j.tsf.2016.09.022</ext-link>
  8. Beijer, P. A. C., Sobota, A., van Veldhuizen, E. M., Kroesen, G. M. W. (2016). Multiplying probe for accurate power measurements on an RF driven atmospheric pressure plasma jet applied to the COST reference microplasma jet. <em>Journal of Physics D: Applied Physics</em>, 49 (10), 104001. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1088/0022-3727/49/10/104001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1088/0022-3727/49/10/104001</a>">https://doi.org/10.1088/0022-3727/49/10/104001</ext-link>
  9. Klíma, M., Janča, J., Kapička, V., Slavíček, P., Saul, P. (2000). <em>Způsob vytváření fyzikálně a chemicky aktivního prostředí plazmovou tryskou a plazmová tryska (Method of making a physically and chemically active environment by means of a plasma jet and the related plasma jet)</em>. Patent CZ286310 (2000), US6525481B1 (2003), EP1077021A1 (2005).
  10. Klíma, M., Slavíček, P., Šíra, M., Čižmár, T., Vaněk, P. (2006). HF plasma pencil and DC diaphragm discharge in liquids - diagnostics and application. <em>Czechoslovak Journal of Physics</em>, 56, B1051-B1056. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10582-006-0325-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10582-006-0325-x</a>">https://doi.org/10.1007/s10582-006-0325-x</ext-link>
  11. Yablokov, M., Gilman, A., Kuznetsov, A. (2017). Modification of wettability of polymer surfaces by plasma. In <em>Proceedings of the 21st Symposium on Application of Plasma Processes</em>. Bratislava, SK: Comenius University Bratislava, 19-26.
  12. Pernica, R., Klíma, M., Londák, P., Fiala, P. (2024). Modification of insulating properties of surfaces of dielectric high-voltage devices using plasma. <em>Applied Sciences</em>, 14 (11), 4399. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/app14114399" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/app14114399</a>">https://doi.org/10.3390/app14114399</ext-link>
  13. Stratton, J. A. (2007). <em>Electromagnetic Theory</em>. Wiley, ISBN 9780470131534.
  14. ANSYS, Inc., <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.ansys.com/">https://www.ansys.com/</ext-link>
  15. Kopeček, J., Dvořák, M. (1966). <em>Přístrojové transformátory</em>. Praha, ČR: Academia.
  16. Fiala, P. (1999). <em>Modelování transformátoru proudu při zkratu (Modeling of current transformers on a short- circuit)</em>. PhD Thesis, VUT FEI, Brno, ČR. ISBN 80-214-1346-8.
  17. Havelka, O. a kol. (1985). <em>Elektrické přístroje</em>. Praha, ČR: SNTL. ISBN 04-529-85.
  18. Lin, L., Rui, L., Tao, Y., Li, Q., Chiang, W.-H., Xu, H. (2022). Surface modification of metal substrates using dielectric barrier discharge plasma and the wettability study. <em>Journal of the Taiwan Institute of Chemical Engineers</em>, 138, 104467. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jtice.2022.104467" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jtice.2022.104467</a>">https://doi.org/10.1016/j.jtice.2022.104467</ext-link>
  19. Kříž, M. (2019). <em>Dimenzování a jištění elektrických zařízení</em>. Pardubice, ČR: IN-EL. ISBN 9788087942482.
  20. Sujar-Garrido, P., Becerra, M., Örlü, R. (2022). Efficiency assessment of a single surface dielectric barrier discharge plasma actuator with an optimized Suzen-Huang model. <em>Physics of Fluids</em>, 34 (4), 047110. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1063/5.0087395" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/5.0087395</a>">https://doi.org/10.1063/5.0087395</ext-link>
  21. Wang, C.. Zhang, G., Wang, X., He, X. (2010). The effect of air plasma on barrier dielectric surface in dielectric barrier discharge. <em>Applied Surface Science</em>, 257 (5), 1698-1702. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.apsusc.2010.08.125" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.apsusc.2010.08.125</a>">https://doi.org/10.1016/j.apsusc.2010.08.125</ext-link>
  22. Deng, J., Matsuoka, S., Kumada, A., Hidaka, K., Pu, L., Zhang, G. (2012). Effect of residual charges on surface discharge propagation under impulse voltage. <em>Gaodianya Jishu/High Voltage Engineering</em>, 38 (8), 2137-2144. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3969/j.issn.1003-6520.2012.08.045" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3969/j.issn.1003-6520.2012.08.045</a>">https://doi.org/10.3969/j.issn.1003-6520.2012.08.045</ext-link>
  23. Polášková, K., Nečas, D., Dostál, L., Klíma, M., Fiala, P., Zajíčková, L. (2022). Self-organization phenomena in cold atmospheric pressure plasma slit jet. <em>Plasma Sources Science and Technology</em>, 31, 125014. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1088/1361-6595/acab82" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1088/1361-6595/acab82</a>">https://doi.org/10.1088/1361-6595/acab82</ext-link>
  24. Maryniak, W. A., Uehara, T., Noras, M. A. (2003). <em>Surface resistivity and surface resistance measurements: Using a concentric ring probe technique</em>. Trek Application Note 1005.
  25. Liang, H., Du, B., Li, J., Du, Q. (2018). Numerical simulation on the surface charge accumulation process of epoxy insulator under needle-plane corona discharge in air. <em>IET Science, Measurement and Technology</em>, 12 (1), 9-16. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1049/iet-smt.2017.0164" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1049/iet-smt.2017.0164</a>">https://doi.org/10.1049/iet-smt.2017.0164</ext-link>
  26. Drexler, P. Szabó, Z., Pernica, R., Zukal, J., Kadlec, R., Klíma, M., Fiala, P. (2022). Modeling and experimental verification of plasma jet electromagnetic signals. <em>Modelling</em>, 3 (1), 70-91. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/modelling3010005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/modelling3010005</a>">https://doi.org/10.3390/modelling3010005</ext-link>
  27. Polášková, K., Ozkan, A., Klíma, M., Jeníková, Z., Buddhadasa, M., Reniers, F., Zajíčková, L. (2023). Comparing efficiencies of polypropylene treatment by atmospheric pressure plasma jets. <em>Plasma Processes and Polymers</em>, 20 (11), e2300031. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/ppap.202300031" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/ppap.202300031</a>">https://doi.org/10.1002/ppap.202300031</ext-link>
  28. Polášková, K., Klíma, M., Jeníková, Z., Blahová, L., Zajíčková, L. (2021). Effect of low molecular weight oxidized materials and nitrogen groups on adhesive joints of polypropylene treated by a cold atmospheric plasma jet. <em>Polymers</em>, 13 (24), 4396. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/polym13244396" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/polym13244396</a>">https://doi.org/10.3390/polym13244396</ext-link>
  29. Tian, L., Shen, L., Xue, Y., Chen, L., Li, L., Chen, P., Tian, J., Zhao, W. (2022). Theoretical and experimental research on spatial performances of the long-slit streak tube. <em>Measurement Science Review</em>, 22 (2), 58-64. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/msr-2022-0007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/msr-2022-0007</a>">https://doi.org/10.2478/msr-2022-0007</ext-link>
  30. ASTM. (1999). <em>Standard test methods for DC resistance or conductance of insulating materials</em>. Standard D 257-99.
Language: English
Page range: 215 - 225
Submitted on: May 3, 2024
Accepted on: Nov 26, 2024
Published on: Dec 24, 2024
Published by: Slovak Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2024 Roman Pernica, Miloš Klima, Pavel Fiala, published by Slovak Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.