Have a personal or library account? Click to login
Enhanced Image Reconstruction in Electrical Impedance Tomography using Radial Basis Function Neural Networks Cover

Enhanced Image Reconstruction in Electrical Impedance Tomography using Radial Basis Function Neural Networks

Open Access
|Dec 2024

References

  1. Pennati, F., Angelucci, A., Morelli, L., Bardini, S., Barzanti, E., Cavallini, F., Conelli, A., Di Federico, G., Paganelli, C., Aliverti, A. (2023). Electrical impedance tomography: From the traditional design to the novel frontier of wearables. Sensors, 23 (3), 1182. https://doi.org/10.3390/s23031182
  2. Holder, D. (Ed.) (1993). Clinical and Physiological Applications of Electrical Impedance Tomography. CRC Press, ISBN 9781857281644.
  3. Bera, T. K. (2018). Applications of electrical impedance tomography (EIT): A short review. IOP Conference Series: Materials Science and Engineering, 331, 012004. https://doi.org/10.1088/1757-899X/331/1/012004
  4. Pessel, M., Gibert, D. (2003). Multiscale electrical impedance tomography. Journal of Geophysical Research: Solid Earth, 108 (B1). https://doi.org/10.1029/2001JB000233
  5. Wu, Y., Hanzaee, F. F., Jiang, D., Bayford, R. H., Demosthenous, A. (2021). Electrical impedance tomography for biomedical applications: Circuits and systems review. IEEE Open Journal of Circuits and Systems, 2, 380-397. http://dx.doi.org/10.1109/OJCAS.2021.3075302
  6. Wang, H., Liu, K., Wu, Y., Wang, S., Zhang, Z., Li, F., Yao, J. (2020). Image reconstruction for electrical impedance tomography using radial basis function neural network based on hybrid particle swarm optimization algorithm. IEEE Sensors Journal, 21 (2), 1926-1934. https://doi.org/10.1109/JSEN.2020.3019309
  7. Chen, X., Wang, Z., Zhang, X., Fu, R., Wang, D., Zhang, M., Wang, H. (2021). Deep autoencoder imaging method for electrical impedance tomography. IEEE Transactions on Instrumentation and Measurement, 70, 4505515. https://doi.org/10.1109/TIM.2021.3094834
  8. Lin, Z., Guo, R., Zhang, K., Li, M., Fan, Y., Xu, S., Liu, D., Abubakar, A. (2022). Feature-based inversion using variational autoencoder for electrical impedance tomography. IEEE Transactions on Instrumentation and Measurement, 71, 4504712. https://doi.org/10.1109/TIM.2022.3192054
  9. Li, X., Lu, R., Wang, Q., Wang, J., Duan, X., Sun, Y., Li, X., Zhou, Y. (2020). One-dimensional convolutional neural network (1D-CNN) image reconstruction for electrical impedance tomography. Review of Scientific Instruments, 91 (12), 124704. https://doi.org/10.1063/5.0025881
  10. Zhang, X., Wang, Z., Fu, R., Wang, D., Chen, X., Guo, X., Wang, H. (2022). V-shaped dense denoising convolutional neural network for electrical impedance tomography. IEEE Transactions on Instrumentation and Measurement, 71, 4503014. https://doi.org/10.1109/TIM.2022.3166177
  11. Ren, S., Guan, R., Liang, G., Dong, F. (2021). RCRC: A deep neural network for dynamic image reconstruction of electrical impedance tomography. IEEE Transactions on Instrumentation and Measurement, 70, 4505311. https://doi.org/10.1109/TIM.2021.3092061
  12. Zhu, Z., Li, G., Luo, M., Zhang, P., Gao, Z. (2023). Electrical impedance tomography of industrial two-phase flow based on radial basis function neural network optimized by the artificial bee colony algorithm. Sensors, 23 (17), 7645. https://doi.org/10.3390/s23177645
  13. Dong, Q., Zhang, Y., He, Q., Xu, C., Pan, X. (2023). Image reconstruction method for electrical impedance tomography based on RBF and attention mechanism. Computers and Electrical Engineering, 110, 108826. https://doi.org/10.1016/j.compeleceng.2023.108826
  14. Wu, Y., Chen, B., Liu, K., Zhu, C., Pan, H., Jia, J. (2021). Shape reconstruction with multiphase conductivity for electrical impedance tomography using improved convolutional neural network method. IEEE Sensors Journal, 21 (7), 9277-9287. https://doi.org/10.1109/JSEN.2021.3050845
  15. Deng, D. (2020). DBSCAN clustering algorithm based on density. In 2020 7th International Forum on Electrical Engineering and Automation (IFEEA). IEEE. https://doi.org/10.1109/IFEEA51475.2020.00199
  16. Mikulka, J., Zimniok, D., Dušek, J. (2023). Laboratory system of electrical impedance tomography. In 2023 14th International Conference on Measurement. IEEE. https://doi.org/10.23919/MEASUREMENT59122.2023.10164432
  17. Adler, A., Boyle, A., Crabb, M. G., Grychtol, B., Lionheart, W. R. B., Tregidgo, H. F. J., Yerworth, R. (2017). EIDORS Version 3.9. In Proceedings of the 18th International Conference on Biomedical Applications of Electrical Impedance Tomography (EIT). Hanover, New Hampshire, US: Thayer School of Engineering at Dartmouth.
  18. Zhou, Z., Sato dos Santos, G., Dowrick, T., Avery, J., Sun, Z., Xu, H., Holder, D. S. (2015). Comparison of total variation algorithms for electrical impedance tomography. Physiological Measurement, 36 (6), 1193. https://doi.org/10.1088/0967-3334/36/6/1193
  19. Islam, M. R., Kiber, M. A. (2014). Electrical impedance tomography imaging using Gauss-Newton algorithm. In 2014 International Conference on Informatics, Electronics & Vision (ICIEV). IEEE. https://doi.org/10.1109/ICIEV.2014.6850719
Language: English
Page range: 200 - 210
Submitted on: Jul 26, 2024
Accepted on: Nov 6, 2024
Published on: Dec 24, 2024
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2024 Serge Ayme Kouakouo Nomvussi, Jan Mikulka, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.