Have a personal or library account? Click to login
Enhanced Image Reconstruction in Electrical Impedance Tomography using Radial Basis Function Neural Networks Cover

Enhanced Image Reconstruction in Electrical Impedance Tomography using Radial Basis Function Neural Networks

Open Access
|Dec 2024

References

  1. Pennati, F., Angelucci, A., Morelli, L., Bardini, S., Barzanti, E., Cavallini, F., Conelli, A., Di Federico, G., Paganelli, C., Aliverti, A. (2023). Electrical impedance tomography: From the traditional design to the novel frontier of wearables. <em>Sensors</em>, 23 (3), 1182. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/s23031182" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/s23031182</a>">https://doi.org/10.3390/s23031182</ext-link>
  2. Holder, D. (Ed.) (1993). <em>Clinical and Physiological Applications of Electrical Impedance Tomography</em>. CRC Press, ISBN 9781857281644.
  3. Bera, T. K. (2018). Applications of electrical impedance tomography (EIT): A short review. <em>IOP Conference Series: Materials Science and Engineering</em>, 331, 012004. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1088/1757-899X/331/1/012004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1088/1757-899X/331/1/012004</a>">https://doi.org/10.1088/1757-899X/331/1/012004</ext-link>
  4. Pessel, M., Gibert, D. (2003). Multiscale electrical impedance tomography. <em>Journal of Geophysical Research: Solid Earth</em>, 108 (B1). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1029/2001JB000233" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1029/2001JB000233</a>">https://doi.org/10.1029/2001JB000233</ext-link>
  5. Wu, Y., Hanzaee, F. F., Jiang, D., Bayford, R. H., Demosthenous, A. (2021). Electrical impedance tomography for biomedical applications: Circuits and systems review. <em>IEEE Open Journal of Circuits and Systems</em>, 2, 380-397. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://dx.doi.org/<a href="https://doi.org/10.1109/OJCAS.2021.3075302" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/OJCAS.2021.3075302</a>">http://dx.doi.org/<a href="https://doi.org/10.1109/OJCAS.2021.3075302" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/OJCAS.2021.3075302</a></ext-link>
  6. Wang, H., Liu, K., Wu, Y., Wang, S., Zhang, Z., Li, F., Yao, J. (2020). Image reconstruction for electrical impedance tomography using radial basis function neural network based on hybrid particle swarm optimization algorithm. <em>IEEE Sensors Journal</em>, 21 (2), 1926-1934. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/JSEN.2020.3019309" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/JSEN.2020.3019309</a>">https://doi.org/10.1109/JSEN.2020.3019309</ext-link>
  7. Chen, X., Wang, Z., Zhang, X., Fu, R., Wang, D., Zhang, M., Wang, H. (2021). Deep autoencoder imaging method for electrical impedance tomography. <em>IEEE Transactions on Instrumentation and Measurement</em>, 70, 4505515. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/TIM.2021.3094834" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/TIM.2021.3094834</a>">https://doi.org/10.1109/TIM.2021.3094834</ext-link>
  8. Lin, Z., Guo, R., Zhang, K., Li, M., Fan, Y., Xu, S., Liu, D., Abubakar, A. (2022). Feature-based inversion using variational autoencoder for electrical impedance tomography. <em>IEEE Transactions on Instrumentation and Measurement</em>, 71, 4504712. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/TIM.2022.3192054" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/TIM.2022.3192054</a>">https://doi.org/10.1109/TIM.2022.3192054</ext-link>
  9. Li, X., Lu, R., Wang, Q., Wang, J., Duan, X., Sun, Y., Li, X., Zhou, Y. (2020). One-dimensional convolutional neural network (1D-CNN) image reconstruction for electrical impedance tomography. <em>Review of Scientific Instruments</em>, 91 (12), 124704. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1063/5.0025881" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/5.0025881</a>">https://doi.org/10.1063/5.0025881</ext-link>
  10. Zhang, X., Wang, Z., Fu, R., Wang, D., Chen, X., Guo, X., Wang, H. (2022). V-shaped dense denoising convolutional neural network for electrical impedance tomography. <em>IEEE Transactions on Instrumentation and Measurement</em>, 71, 4503014. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/TIM.2022.3166177" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/TIM.2022.3166177</a>">https://doi.org/10.1109/TIM.2022.3166177</ext-link>
  11. Ren, S., Guan, R., Liang, G., Dong, F. (2021). RCRC: A deep neural network for dynamic image reconstruction of electrical impedance tomography. <em>IEEE Transactions on Instrumentation and Measurement</em>, 70, 4505311. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/TIM.2021.3092061" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/TIM.2021.3092061</a>">https://doi.org/10.1109/TIM.2021.3092061</ext-link>
  12. Zhu, Z., Li, G., Luo, M., Zhang, P., Gao, Z. (2023). Electrical impedance tomography of industrial two-phase flow based on radial basis function neural network optimized by the artificial bee colony algorithm. <em>Sensors</em>, 23 (17), 7645. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/s23177645" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/s23177645</a>">https://doi.org/10.3390/s23177645</ext-link>
  13. Dong, Q., Zhang, Y., He, Q., Xu, C., Pan, X. (2023). Image reconstruction method for electrical impedance tomography based on RBF and attention mechanism. <em>Computers and Electrical Engineering</em>, 110, 108826. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.compeleceng.2023.108826" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.compeleceng.2023.108826</a>">https://doi.org/10.1016/j.compeleceng.2023.108826</ext-link>
  14. Wu, Y., Chen, B., Liu, K., Zhu, C., Pan, H., Jia, J. (2021). Shape reconstruction with multiphase conductivity for electrical impedance tomography using improved convolutional neural network method. <em>IEEE Sensors Journal</em>, 21 (7), 9277-9287. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/JSEN.2021.3050845" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/JSEN.2021.3050845</a>">https://doi.org/10.1109/JSEN.2021.3050845</ext-link>
  15. Deng, D. (2020). DBSCAN clustering algorithm based on density. In <em>2020 7th International Forum on Electrical Engineering and Automation (IFEEA)</em>. IEEE. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/IFEEA51475.2020.00199" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/IFEEA51475.2020.00199</a>">https://doi.org/10.1109/IFEEA51475.2020.00199</ext-link>
  16. Mikulka, J., Zimniok, D., Dušek, J. (2023). Laboratory system of electrical impedance tomography. In <em>2023 14th International Conference on Measurement</em>. IEEE. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.23919/MEASUREMENT59122.2023.10164432" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.23919/MEASUREMENT59122.2023.10164432</a>">https://doi.org/10.23919/MEASUREMENT59122.2023.10164432</ext-link>
  17. Adler, A., Boyle, A., Crabb, M. G., Grychtol, B., Lionheart, W. R. B., Tregidgo, H. F. J., Yerworth, R. (2017). EIDORS Version 3.9. In <em>Proceedings of the 18th International Conference on Biomedical Applications of Electrical Impedance Tomography (EIT)</em>. Hanover, New Hampshire, US: Thayer School of Engineering at Dartmouth.
  18. Zhou, Z., Sato dos Santos, G., Dowrick, T., Avery, J., Sun, Z., Xu, H., Holder, D. S. (2015). Comparison of total variation algorithms for electrical impedance tomography. <em>Physiological Measurement</em>, 36 (6), 1193. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1088/0967-3334/36/6/1193" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1088/0967-3334/36/6/1193</a>">https://doi.org/10.1088/0967-3334/36/6/1193</ext-link>
  19. Islam, M. R., Kiber, M. A. (2014). Electrical impedance tomography imaging using Gauss-Newton algorithm. In <em>2014 International Conference on Informatics, Electronics &amp; Vision (ICIEV)</em>. IEEE. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/ICIEV.2014.6850719" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/ICIEV.2014.6850719</a>">https://doi.org/10.1109/ICIEV.2014.6850719</ext-link>
Language: English
Page range: 200 - 210
Submitted on: Jul 26, 2024
Accepted on: Nov 6, 2024
Published on: Dec 24, 2024
Published by: Slovak Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2024 Serge Ayme Kouakouo Nomvussi, Jan Mikulka, published by Slovak Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.