References
- Shen, L. (2023). Retracted: Implementation of CT image segmentation based on an image segmentation algorithm. Applied Bionics and Biomechanics, 2023, 9840516. https://doi.org/10.1155/2022/2047537
- Glorindal, G., Mozhiselvi, S. A., Kumar, T. A., Kumaran, K., Katema, P. C., Kandimba, T. (2021). A simplified approach for melanoma skin disease identification. In 2021 International Conference on System, Computation, Automation and Networking (ICSCAN). IEEE. https://doi.org/10.1109/ICSCAN53069.2021.9526511
- Chai, R. (2021). Otsu’s image segmentation algorithm with memory-based fruit fly optimization algorithm. Complexity, 2021, 5564690. https://doi.org/10.1155/2021/5564690
- Li, M., Sha, H., Liu, H. (2022). Microfeature segmentation algorithm for biological images using improved density peak clustering. Computational and Mathematical Methods in Medicine, 2022, 8630449. https://doi.org/10.1155/2022/8630449
- Zhang, Y., Balochian, S., Agarwal, P., Bhatnagar, V., Housheya, O. J. (2014). Artificial intelligence and its applications. Mathematical Problems in Engineering, 2014, 840491. https://doi.org/10.1155/2014/840491
- Chen, W., Yu, C., Tu, C., Lyu, Z., Tang, J., Ou, S., Fu, Y., Xue, Z. (2020). A survey on hand pose estimation with wearable sensors and computer-vision-based methods. Sensors, 20 (4), 1074. https://doi.org/10.3390/s20041074
- Song, Y., Cisternino, F., Mekke, J. M., de Borst, G. J., de Kleijn, D. P. V., Pasterkamp, G., Vink, A., Glastonbury, C. A., van der Laan, S. W., Miller, C. L. (2023). An automatic entropy method to efficiently mask histology whole-slide images. Scientific Reports, 13 (1), 4321. https://doi.org/10.1038/s41598-023-29638-1
- Buyck, F., Vandemeulebroucke, J., Ceranka, J., Van Gestel, F., Cornelius, J. F., Duerinck, J., Bruneau, M. (2023). Computer-vision based analysis of the neurosurgical scene - A systematic review. Brain and Spine, 3, 102706. https://doi.org/10.1016/j.bas.2023.102706
- Putra, R. H., Doi, C., Yoda, N., Astuti, E. R., Sasaki, K. (2022). Current applications and development of artificial intelligence for digital dental radiography. Dentomaxillofacial Radiology, 51 (1), 20210197. https://doi.org/10.1259/dmfr.20210197
- Froese, L., Dian, J., Batson, C., Gomez, A., Sainbhi, A. S., Unger, B., Zeiler, F. A. (2021). Computer vision for continuous bedside pharmacological data extraction: A novel application of artificial intelligence for clinical data recording and biomedical research. Frontiers in Big Data, 4, 689358. https://doi.org/10.3389/fdata.2021.689358
- Parameswari, A., Bhavani, S., Kumar, K. V. (2024). A deep learning based glioma tumour detection using efficient visual geometry group convolutional neural networks architecture. Brazilian Archives of Biology and Technology, 67, e24230705. https://doi.org/10.1590/1678-4324-2024230705
- Liyanage, H., Liaw, S.-T., Jonnagaddala, J., Schreiber, R., Kuziemsky, C., Terry, A. L., de Lusignan, S. (2019). Artificial intelligence in primary health care: Perceptions, issues, and challenges. Yearbook of Medical Informatics, 28 (1), 41-46. https://doi.org/10.1055/s-0039-1677901
- Parameswari, A., Bhavani, S., Kumar, K. V. (2023). A convolutional deep neural network based brain tumor diagnoses using clustered image and feature-supported classifier (CIFC) technique. Brazilian Archives of Biology and Technology, 66, e23230012. http://dx.doi.org/10.1590/1678-4324-2023230012
- Parameswari, A., Kumar, K. V., Gopinath, S. (2022). Thermal analysis of Alzheimer’s disease prediction using random forest classification model. Materials Today: Proceedings, 66 (3), 815-821. https://doi.org/10.1016/j.matpr.2022.04.357
- Stephe, S., Jayasankar, T., Kumar, K. V. (2019). Motor imagery recognition of EEG signal using cuckoo-search masking empirical mode decomposition. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8 (11), 2717-2720. http://dx.doi.org/10.35940/ijitee.K2175.0981119