Have a personal or library account? Click to login
Adaptive Proportional Derivative Control for Magnetic Bearing in Full Maglev Left Ventricular Assist Device Cover

Adaptive Proportional Derivative Control for Magnetic Bearing in Full Maglev Left Ventricular Assist Device

By: Wenfei Tao,  Chen Chen and  Kejia Zhang  
Open Access
|Aug 2024

References

  1. Chen, C., Paden, B., Antaki, J., Ludlow, J., Paden, D., Crowson, R., Bearnson, G. (2002). A magnetic suspension theory and its application to the HeartQuest ventricular assist device. Artificial Organs, 26 (11), 947-951. https://doi.org/10.1046/j.1525-1594.2002.07125.x
  2. Masuzawa, T., Onuma, H., Kim, S.-J., Okada, Y. (2001). Magnetically suspended centrifugal blood pump with a self-bearing motor. ASAIO Journal, 48 (4), 437-442. https://doi.org/10.1097/00002480-200207000-00019
  3. Asama, J., Shinshi, T., Hoshi, H., Takatani, S., Shimokohbe, A. (2004). A new design for a compact centrifugal blood pump with a magnetically levitated rotor. ASAIO Journal, 50 (6), 550-556. https://doi.org/10.1097/01.MAT.0000144364.62671.5 A
  4. Jeng, J.-T. (2000). Nonlinear adaptive inverse control for the magnetic bearing system. Journal of Magnetism and Magnetic Materials, 209 (1-3), 186-188. https://doi.org/10.1016/S0304-8853(99)00683-6
  5. Betschon, F., Knospe, C. R. (2001). Reducing magnetic bearing currents via gain scheduled adaptive control. IEEE/ASME Transactions on Mechatronics, 6 (4), 437-443. https://doi.org/10.1109/3516.974857
  6. Basaran, S., Sivrioglu, S., Zergeroglu, E. (2017). Composite adaptive control of single gimbal control moment gyroscope supported by active magnetic bearings. Journal of Aerospace Engineering, 30 (1). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000673
  7. Su, T.-J., Li, T.-Y., Tsou, T.-Y., Giap, V.-N., Nguyen, Q.-D. (2017). Proportional–integral–derivative/fuzzy sliding mode control for suspension of active magnetic bearing system. Advances in Mechanical Engineering, 9 (12), 1-8. https://doi.org/10.1177/1687814017736654
  8. Zad, H. S., Khan, T. I., Lazoglu, I. (2018). Design and adaptive sliding-mode control of hybrid magnetic bearings. IEEE Transactions on Industrial Electronics, 65 (3), 2537-2547. https://doi.org/10.1109/tie.2017.2739682
  9. Dhyani, A., Panda, M. K., Jha, B. (2018). Moth-flame optimization-based fuzzy-PID controller for optimal control of active magnetic bearing system. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 42 (4), 451-463. https://doi.org/10.1007/s40998-018-0077-1
  10. Carvalho, F. C., Fernandes de Oliveira, M. V., Lara-Molina, F. A., Cavalini, Jr., A. A., Steffen, Jr., V. (2021). Fuzzy robust control applied to rotor supported by active magnetic bearing. Journal of Vibration and Control, 27 (7-8), 912-923. https://doi.org/10.1177/1077546320933734
  11. Humaidi, A. J., Kadhim, S. K., Gataa, A. S. (2021). Optimal adaptive magnetic suspension control of rotary impeller for artificial heart pump. Cybernetics and Systems, 53 (1), 141-167. https://doi.org/10.1080/01969722.2021.2008686
  12. Huettner, C. (2003). Vibration control for an implantable blood pump on a bearingless slice motor. JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 46 (3), 908-915. https://doi.org/10.1299/jsmec.46.908
  13. Ren, Z., Jahanmir, S., Heshmat, H., Hunsberger, A. Z., Walton, J. F. (2009). Design analysis and performance assessment of hybrid magnetic bearings for a rotary centrifugal blood pump. ASAIO Journal, 55 (4), 340-347. https://doi.org/10.1097/mat.0b013e3181a094c8
  14. Pai, C. N., Shinshi, T., Shimokohbe, A. (2010). Estimation of the radial force using a disturbance force observer for a magnetically levitated centrifugal blood pump. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224 (7), 913-924. https://doi.org/10.1243/09544119JEIM628
  15. Da Silva, I., Horikawa, O., Cardoso, J. R., Camargo, F. A., Andrade, A. J. P., Bock, E. G. P. (2011). Single axis controlled hybrid magnetic bearing for left ventricular assist device: Hybrid core and closed magnetic circuit. Artificial Organs, 35 (5), 448-453. https://doi.org/10.1111/j.1525-1594.2011.01265.x
Language: English
Page range: 129 - 136
Submitted on: Nov 23, 2023
Accepted on: Jul 8, 2024
Published on: Aug 30, 2024
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2024 Wenfei Tao, Chen Chen, Kejia Zhang, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.