References
- Chen, C., Paden, B., Antaki, J., Ludlow, J., Paden, D., Crowson, R., Bearnson, G. (2002). A magnetic suspension theory and its application to the HeartQuest ventricular assist device. Artificial Organs, 26 (11), 947-951. https://doi.org/10.1046/j.1525-1594.2002.07125.x
- Masuzawa, T., Onuma, H., Kim, S.-J., Okada, Y. (2001). Magnetically suspended centrifugal blood pump with a self-bearing motor. ASAIO Journal, 48 (4), 437-442. https://doi.org/10.1097/00002480-200207000-00019
- Asama, J., Shinshi, T., Hoshi, H., Takatani, S., Shimokohbe, A. (2004). A new design for a compact centrifugal blood pump with a magnetically levitated rotor. ASAIO Journal, 50 (6), 550-556. https://doi.org/10.1097/01.MAT.0000144364.62671.5 A
- Jeng, J.-T. (2000). Nonlinear adaptive inverse control for the magnetic bearing system. Journal of Magnetism and Magnetic Materials, 209 (1-3), 186-188. https://doi.org/10.1016/S0304-8853(99)00683-6
- Betschon, F., Knospe, C. R. (2001). Reducing magnetic bearing currents via gain scheduled adaptive control. IEEE/ASME Transactions on Mechatronics, 6 (4), 437-443. https://doi.org/10.1109/3516.974857
- Basaran, S., Sivrioglu, S., Zergeroglu, E. (2017). Composite adaptive control of single gimbal control moment gyroscope supported by active magnetic bearings. Journal of Aerospace Engineering, 30 (1). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000673
- Su, T.-J., Li, T.-Y., Tsou, T.-Y., Giap, V.-N., Nguyen, Q.-D. (2017). Proportional–integral–derivative/fuzzy sliding mode control for suspension of active magnetic bearing system. Advances in Mechanical Engineering, 9 (12), 1-8. https://doi.org/10.1177/1687814017736654
- Zad, H. S., Khan, T. I., Lazoglu, I. (2018). Design and adaptive sliding-mode control of hybrid magnetic bearings. IEEE Transactions on Industrial Electronics, 65 (3), 2537-2547. https://doi.org/10.1109/tie.2017.2739682
- Dhyani, A., Panda, M. K., Jha, B. (2018). Moth-flame optimization-based fuzzy-PID controller for optimal control of active magnetic bearing system. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 42 (4), 451-463. https://doi.org/10.1007/s40998-018-0077-1
- Carvalho, F. C., Fernandes de Oliveira, M. V., Lara-Molina, F. A., Cavalini, Jr., A. A., Steffen, Jr., V. (2021). Fuzzy robust control applied to rotor supported by active magnetic bearing. Journal of Vibration and Control, 27 (7-8), 912-923. https://doi.org/10.1177/1077546320933734
- Humaidi, A. J., Kadhim, S. K., Gataa, A. S. (2021). Optimal adaptive magnetic suspension control of rotary impeller for artificial heart pump. Cybernetics and Systems, 53 (1), 141-167. https://doi.org/10.1080/01969722.2021.2008686
- Huettner, C. (2003). Vibration control for an implantable blood pump on a bearingless slice motor. JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 46 (3), 908-915. https://doi.org/10.1299/jsmec.46.908
- Ren, Z., Jahanmir, S., Heshmat, H., Hunsberger, A. Z., Walton, J. F. (2009). Design analysis and performance assessment of hybrid magnetic bearings for a rotary centrifugal blood pump. ASAIO Journal, 55 (4), 340-347. https://doi.org/10.1097/mat.0b013e3181a094c8
- Pai, C. N., Shinshi, T., Shimokohbe, A. (2010). Estimation of the radial force using a disturbance force observer for a magnetically levitated centrifugal blood pump. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224 (7), 913-924. https://doi.org/10.1243/09544119JEIM628
- Da Silva, I., Horikawa, O., Cardoso, J. R., Camargo, F. A., Andrade, A. J. P., Bock, E. G. P. (2011). Single axis controlled hybrid magnetic bearing for left ventricular assist device: Hybrid core and closed magnetic circuit. Artificial Organs, 35 (5), 448-453. https://doi.org/10.1111/j.1525-1594.2011.01265.x