References
- Takiguchi, M., Sugimoto, H., Kurihara, N., Chiba, A. (2015). Acoustic noise and vibration reduction of SRM by elimination of third harmonic component in sum of radial forces. IEEE Transactions on Energy Conversion, 30 (3), 883-891. https://doi.org/10.1109/TEC.2015.2401398
- Zhai, G. D., Yang, X., Lv, Q. (2021). A calibration system of resonant high-acceleration and metrological traceability. Measurement Science and Technology, 32 (12), 125904. https://doi.org/10.1088/1361-6501/ac28d1
- Guo, Y. Q., Li, Z. Y., Yang, X. L. (2021). Research on structure design of mechanical shaking table and its waveform recurrence performance test. Aerospace Shanghai, 38 (1), 53-60. https://doi.org/10.19328/j.cnki.1006-1630.2021.01.007
- Parsons, M. G. (1983). Mode coupling in torsional and longitudinal shafting vibrations. Marine Technology and SNAME News, 20 (3), 257-271. https://doi.org/10.5957/mt1.1983.20.3.257
- Li, Z., Yan, X., Qin, L. (2015). Robust global sliding model control for water-hull-propulsion unit interaction systems-part 2: Model validation. Technical Gazette, 22 (2), 465-473. https://doi.org/10.17559/TV-20141208054604
- Huang, Q. W, Zhang, C., Jin, Y., Yuan, C. Q., Yan, X. P. (2015). Vibration analysis of marine propulsion shafting by the coupled finite element method. Journal of Vibroengineering, 17 (7), 3392-3403. https://www.extrica.com/article/15959
- Huang, Q. W., Yan, X. P., Wang, Y. K., Zhang, C., Wang, Z. H. (2017). Numerical modeling and experimental analysis on coupled torsional-longitudinal vibrations of a ship’s propeller shaft. Ocean Engineering, 136, 272-282. https://doi.org/10.1016/j.oceaneng.2017.03.017
- Ni, H. P., Zhang, C. R., Hu, T. L., Wang, T., Chen, Q. Z., Chen, C. (2019). A dynamic parameter identification method of industrial robots considering joint elasticity. International Journal of Advanced Robotic Systems, 16 (1). https://doi.org/10.1177/1729881418825217
- Kwon, J., Choi, K., Park, F. C. (2021). Kinodynamic model identification: A unified geometric approach. IEEE Transactions on Robotics, 37 (4), 1100-1114. https://doi.org/10.1109/TRO.2020.3047515
- Ng, C.-T., Au, S.-K. (2018). Mode shape scaling and implications in modal identification with known input. Engineering Structures, 156, 411-416. https://doi.org/10.1016/j.engstruct.2017.11.017
- Wen, Q., Hua, X. G., Chen, Z. Q., Guo, J. M., Niu, H. W. (2017). Modal parameter identification of a long-span footbridge by forced vibration experiments. Advances in Structural Engineering, 20 (5), 661-673. https://doi.org/10.1177/1369433217698322
- Xia, J. N., Song, H. W. (2017). Modal parameter identification of structure under base excitation using vibration test data. Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering, 231 (8), 1428-1450. https://doi.org/10.1177/0954410016652919
- López-Martínez, J., Martínez, J. C., García-Vallejo, D. Alcayde, A., Montoya, F. G. (2021). A new electromechanical analogy approach based on electrostatic coupling for vertical dynamic analysis of planar vehicle models. IEEE Access, 9, 119492-119502. https://doi.org/10.1109/ACCESS.2021.3108488
- Saraswat, A., Tiwari, N. (2017). Modeling and study of nonlinear effects in electrodynamic shakers. Mechanical Systems and Signal Processing, 85, 162-176. https://doi.org/10.1016/j.ymssp.2016.07.025
- Tiwari, N., Puri, A., Saraswat, A. (2017). Lumped parameter modelling and methodology for extraction of model parameters for an electrodynamic shaker. Journal of Low Frequency Noise, Vibration and Active Control, 36 (2), 99-115. https://doi.org/10.1177/0263092317693511