Have a personal or library account? Click to login
A High-Performance Method Based on Features Fusion of EEG Brain Signal and MRI-Imaging Data for Epilepsy Classification Cover

A High-Performance Method Based on Features Fusion of EEG Brain Signal and MRI-Imaging Data for Epilepsy Classification

Open Access
|Mar 2024

References

  1. World Health Organization. (2005). Atlas: Epilepsy Care in the World. ISBN 92-4-156303-6.
  2. Anderson, C. W., Sijercic, Z. (1996). Classification of EEG signals from four subjects during five mental tasks. In Proceedings International Conference on Engineering Applications of Neural Networks (EANN’96). Systems Engineering Association, 407-414.
  3. Kalaycı, T., Özdamar, O. (1995). Wavelet preprocessing for automated neural network detection of EEG spikes. IEEE Engineering in Medicine and Biology Magazine, 14 (2), 160-166. https://doi.org/10.1109/51.376754
  4. Subasi A., Ismail Gursoy, M. (2010). EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Systems with Applications, 37 (12), 8659-8666. https://doi.org/10.1016/j.eswa.2010.06.065
  5. Oğulata, S. N., Şahin, C., Erol, R. (2009). Neural network-based computer-aided diagnosis in classification of primary generalized epilepsy by EEG signals. Journal of Medical Systems, 33 (2), 107-112. https://doi.org/10.1007/s10916-008-9170-8
  6. Gandhi, T. K., Chakraborty, P., Roy, G. G., Panigrahi, B. K. (2012). Discrete harmony search based expert model for epileptic seizure detection in electroencephalography. Expert Systems with Applications, 39 (4), 4055-4062. https://doi.org/10.1016/j.eswa.2011.09.093
  7. Krishnaveni, V, Jayaraman, S., Gunasekaran, A., Ramadoss, K. (2008). Automatic removal of ocular artifacts using JADE algorithm and neural network. International Journal of Information, Control and Computer Sciences, 1.0 (4). https://doi.org/10.5281/zenodo.1333386
  8. Loyek, C., Woermann, F. G., Nattkemper, T. W. (2008). Detection of focal cortical dysplasia lesions in MRI using textural features. In Bildverarbeitung für die Medizin 2008. Springer, 432-436. https://doi.org/10.1007/978-3-540-78640-5_87
  9. Clark, M. C., Hall, L. O., Goldgof, D. B., Clarke, L.P., Velthuizen, R. P., Silbiger, M. S. (1994). MRI segmentation using fuzzy clustering techniques. IEEE Engineering in Medicine and Biology Magazine, 13 (5), 730-742. https://doi.org/10.1109/51.334636
  10. Sujitha, V., Sivagami, P., Vijaya, M. S. (2011). Predicting epileptic seizure from MRI using fast single shot proximal support vector machine. In ICWET ‘11: Proceedings of the International Conference & Workshop on Emerging Trends in Technology. ACM, 525-529. https://doi.org/10.1145/1980022.1980135
  11. Martisius, I., Birvinskas, D., Jusas, V., Tamosevicius, Z. (2011). A 2-D DCT hardware codec based on Loeffler algorithm. Electronics and Electrical Engineering, 113 (7), 47-50. http://dx.doi.org/10.5755/j01.eee.113.7.611
  12. Orlowski, P. (2010). Simplified design of low-pass linear parameter-varying, finite impulse response filters. Information Technology and Control, 39 (2), 130-137. https://itc.ktu.lt/index.php/ITC/article/view/12301
  13. Sharif, B., Jafari, A. H. (2017). Prediction of epileptic seizures from EEG using analysis of ictal rules on Poincaré plane. Computer Methods and Programs in Biomedicine, 145, 11-22. https://doi.org/10.1016/j.cmpb.2017.04.001
  14. Mutlu, A. Y. (2018). Detection of epileptic dysfunctions in EEG signals using Hilbert vibration decomposition. Biomedical Signal Processing and Control, 40, 33-40. https://doi.org/10.1016/j.bspc.2017.08.023
  15. Kaleem, M., Guergachi, A., Krishnan, S. (2018). Patient-specific seizure detection in long-term EEG using wavelet decomposition. Biomedical Signal Processing and Control, 46, 157-165. https://doi.org/10.1016/j.bspc.2018.07.006
  16. Gupta, V., Pachori, R. B. (2019). Epileptic seizure identification using entropy of FBSE based EEG rhythms. Biomedical Signal Processing and Control, 53, 101569. https://doi.org/10.1016/j.bspc.2019.101569
  17. de la O Serna, J. A., Paternina, M. R. A., Zamora-Méndez, A., Tripathy, R. K., Pachori, R. B. (2020). EEG-rrhythm specific Taylor–Fourier filter bank implemented with O-splines for the detection of epilepsy using EEG signals. IEEE Sensors Journal, 20 (12), 6542-6551. https://doi.org/10.1109/JSEN.2020.2976519
  18. Delorme, A., Sejnowski, T., Makeig, S. (2007). Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage, 34 (4), 1443-1449. https://doi.org/10.1016/j.neuroimage.2006.11.004
  19. Krishnaveni, V., Jayaraman, S., Manoj Kumar, P. M., Shivakumar, K., Ramadoss, K. (2005). Comparison of independent component analysis algorithms for removal of ocular artifacts from electroencephalogram. Measurement Science Review, 5 (2), 67-78. https://www.measurement.sk/2005/S2/krishnaveni.pdf
  20. Demirezen Yağmur, F., Sertbaş, A. (2020). Automatic diagnosis of epilepsy from EEG signals using Discrete Cosine Transform. In 2020 28th Signal Processing and Communications Applications Conference (SIU). IEEE. https://doi.org/10.1109/SIU49456.2020.9302300
  21. Chandaka, S., Chatterjee, A., Munshi, S. (2009). Cross-correlation aided support vector machine classifier for classification of EEG signals. Expert Systems with Applications, 36 (2), 1329-1336. https://doi.org/10.1016/j.eswa.2007.11.017
  22. Kumar, Y., Dewal, M. L., Anand, R. S. (2014). Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Signal, Image and Video Processing, 8 (7), 1323-1334. https://doi.org/10.1007/s11760-012-0362-9
  23. Gumaste, P. P., Jadhav, D. V. (2015). Image segmentation techniques for brain MRI images: A survey. International Journal of Modern Trends in Engineering and Research (IJMTER), 2 (7).
  24. Demirezen Yağmur, F., Sertbaş, A. (2018). Diagnosis of epilepsy in brain MR images using DCT-means. In 2018 26th Signal Processing and Communications Applications Conference (SIU). IEEE, 2439-2443. https://doi.org/10.1109/SIU.2018.8404758
  25. Meyer-Bäse, A. (2004). Pattern Recognition in Medical Imaging. Academic Press, 22-35. https://doi.org/10.1016/B978-0-12-493290-6.X5000-7
  26. Abramowitz, M., Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; 9th printing. Dover Publications, ISBN 0-486-61272-4.
  27. Gupta, A., Singh, P., Karlekar, M. (2018). A novel signal modeling approach for classification of seizure and seizure-free EEG signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26 (5), 925-935. https://doi.org/10.1109/TNSRE.2018.2818123
  28. Deivasigamani, S., Senthilpari, C., Yong, W. H. (2021). Machine learning method based detection and diagnosis for epilepsy in EEG signal. Journal of Ambient Intelligence and Humanized Computing, 12, 4215-4221. https://doi.org/10.1007/s12652-020-01816-3
Language: English
Page range: 1 - 8
Submitted on: May 10, 2023
|
Accepted on: Jan 9, 2024
|
Published on: Mar 7, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2024 Fatma Demirezen Yağmur, Ahmet Sertbaş, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.