Have a personal or library account? Click to login

In vivo Volumetric, DTI and 1H MRS Rat Brain Protocol for Monitoring Early Neurodegeneration and Efficacy of the Used Therapy

Open Access
|Oct 2023

References

  1. Sadigh-Eteghad, S., Majdi, A., McCann, S. K., Mahmoudi, J., Vafaee, M. S., Macleod, M. R. (2017). Correction: D-galactose-induced brain ageing model: A systematic review and meta-analysis on cognitive outcomes and oxidative stress indices. PloS One, 12 (12), e0190328. https://doi.org/10.1371/journal.pone.0190328
  2. Damar, U., Gersner, R., Johnstone, J. T., Schachter, S., Rotenberg, A. (2016). Huperzine A as a neuroprotective and antiepileptic drug: A review of preclinical research. Expert Review of Neurotherapeutics, 16 (6), 671-680. https://doi.org/10.1080/14737175.2016.1175303
  3. Ruan, Q., Hu, X., Ao, H., Ma, H., Gao, Z., Liu, F., Kong, D., Bao, Z., Yu, Z. (2014). The neurovascular protective effects of huperzine A on D-galactose-induced inflammatory damage in the rat hippocampus. Gerontology, 60 (5), 424-439. https://doi.org/10.1159/000358235
  4. Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., Ferri, C. P. (2013). The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer’s & Dementia, 9 (1), 63-75.e2. https://doi.org/10.1016/j.jalz.2012.11.007
  5. Hort, J., O’Brien, J. T., Gainotti, G., Pirttila, T., Popescu, B. O., Rektorova, I., Sorbi, S., Scheltens, P. (2010). EFNS guidelines for the diagnosis and management of Alzheimer’s disease. European Journal of Neurology, 17 (10), 1236-1248. https://doi.org/10.1111/j.1468-1331.2010.03040.x
  6. Schroeter, M. L., Stein, T., Maslowski, N., Neumann, J. (2009). Neural correlates of Alzheimer’s disease and mild cognitive impairment: A systematic and quantitative meta-analysis involving 1351 patients. Neuroimage, 47 (4), 1196-1206. https://doi.org/10.1016/j.neuroimage.2009.05.037
  7. Wattjes, M. P., Henneman, W. J., van der Flier, W. M., de Vries, O., Träber, F., Geurts, J. J., Scheltens, P., Vrenken, H., Barkhof, F. (2009). Diagnostic imaging of patients in a memory clinic: Comparison of MR imaging and 64-detector row CT. Radiology, 253 (1), 174-183. https://doi.org/10.1148/radiol.2531082262
  8. Wahlund, L.-O., Julin, P., Johansson, S.-E., Scheltens, P. (2000). Visual rating and volumetry of the medial temporal lobe on magnetic resonance imaging in dementia: a comparative study. Journal of Neurology, Neurosurgery & Psychiatry, 69 (5), 630-635. http://dx.doi.org/10.1136/jnnp.69.5.630
  9. O’Brien, J. T. (2007). Role of imaging techniques in the diagnosis of dementia. The British Journal of Radiology, 80 (special_issue_2), S71-S77. https://doi.org/10.1259/bjr/33117326
  10. Patel, K. P., Wymer, D. T., Bhatia, V. K., Duara, R., Rajadhyaksha, C. D. (2020). Multimodality imaging of dementia: Clinical importance and role of integrated anatomic and molecular imaging. RadioGraphics, 40 (1), 200-222. https://doi.org/10.1148/rg.2020190070
  11. Loos, C., Achten, E., Santens, P. (2010). Proton magnetic resonance spectroscopy in Alzheimer’s disease, a review. Acta Neurologica Belgica, 110 (4), 291-298. https://www.actaneurologica.be/pdfs/2010-4/01-Loos et al.pdf
  12. Waller, A. (1850). Experiments on the frog, and observations of the alterations produced thereby in the structure of their primitive fibers. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 140, 423-429.
  13. Amlien, I. K., Fjell, A. M. (2014). Diffusion tensor imaging of white matter degeneration in Alzheimer’s disease and mild cognitive impairment. Neuroscience, 276, 206-215. https://doi.org/10.1016/j.neuroscience.2014.02.017
  14. Delano-Wood, L., Stricker, N. H., Sorg, S. F., Nation, D. A., Jak, A. J., Woods, S. P., Libon, D. J., Delis, D. C., Frank, L. R., Bondi, M. W. (2012). Posterior cingulum white matter disruption and its associations with verbal memory and stroke risk in mild cognitive impairment. Journal of Alzheimer’s Disease, 29 (3), 589-603. https://doi.org/10.3233/JAD-2012-102103
  15. Head, D., Buckner, R. L., Shimony, J. S., Williams, L. E., Akbudak, E., Conturo, T. E., McAvoy, M., Morris, J. C., Snyder, A. Z. (2004). Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: Evidence from diffusion tensor imaging. Cerebral Cortex, 14 (4), 410-423. https://doi.org/10.1093/cercor/bhh003
  16. Catheline, G., Periot, O., Amirault, M., Braun, M., Dartigues, J.-F., Auriacombe, S., Allard, M. (2010). Distinctive alterations of the cingulum bundle during aging and Alzheimer’s disease. Neurobiology of Aging, 31 (9), 1582-1592. https://doi.org/10.1016/j.neurobiolaging.2008.08.012
  17. Basser, P. J. (1995). Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR in Biomedicine, 8 (7), 333-344. https://doi.org/10.1002/nbm.1940080707
  18. Jeurissen, B., Leemans, A., Tournier, J.-D., Jones, D. K., Sijbers, J. (2013). Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Human Brain Mapping, 34 (11), 2747-2766. https://doi.org/10.1002/hbm.22099
  19. Jones, D. K., Knösche, T. R., Turner, R. (2013). White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI. Neuroimage, 73, 239-254. https://doi.org/10.1016/j.neuroimage.2012.06.081
  20. Foster, T. C. (2006). Biological markers of age-related memory deficits. CNS Drugs, 20 (2), 153-166. https://doi.org/10.2165/00023210-200620020-00006
  21. Holden, H. M., Rayment, I., Thoden, J. B. (2003). Structure and function of enzymes of the Leloir pathway for galactose metabolism. Journal of Biological Chemistry, 278 (45), 43885-43888. https://doi.org/10.1074/jbc.R300025200
  22. Song, X. U., Bao, M., Li, D., Li, Y. M. (1999). Advanced glycation in D-galactose induced mouse aging model. Mechanisms of Ageing and Development, 108 (3), 239-251. https://doi.org/10.1016/S0047-6374(99)00022-6
  23. Gasparotto, J., Girardi, C. S., Somensi, N., Ribeiro, C. T., Moreira, J. C., Michels, M., Sonai, B., Rocha, M., Steckert, A. V., Barichello, T., Quevedo, J., Dal-Pizzol, F., Gelain, D. P. (2018). Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. Journal of Biological Chemistry, 293 (1), 226-244. https://doi.org/10.1074/jbc.M117.786756
  24. Tobon-Velasco, J. C., Cuevas, E., Torres-Ramos, M. A. (2014). Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS & Neurological Disorders: Drug Targets, 13 (9), 1615-1626. http://dx.doi.org/10.2174/1871527313666140806144831
  25. Hua, X., Lei, M., Zhang, Y., Ding, J., Han, Q., Hu, G., Xiao, M. (2007). Long-term D-galactose injection combined with ovariectomy serves as a new rodent model for Alzheimer’s disease. Life Sciences, 80 (20), 1897-1905. https://doi.org/10.1016/j.lfs.2007.02.030
  26. Schmidt, R., Hofer, E., Bouwman, F. H., Buerger, K., Cordonnier, C., Fladby, T., Galimberti, D., Georges, J., Heneka, M. T., Hort, J., Laczó, J., Molinuevo, J. L., O’Brien, J. T., Religa, D., Scheltens, P., Schott, J. M., Sorbi, S. (2015). EFNS-ENS/EAN Guideline on concomitant use of cholinesterase inhibitors and memantine in moderate to severe Alzheimer’s disease. European Journal of Neurology, 22 (6), 889-898. https://doi.org/10.1111/ene.12707
  27. Gruetter, R. (1993). Automatic, localized in Vivo adjustment of all first-and second-order shim coils. Magnetic Resonance in Medicine, 29 (6), 804-811. https://doi.org/10.1002/mrm.1910290613
  28. Tkáč, I., Starčuk, Z., Choi, I.-Y., Gruetter, R. (1999). In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magnetic Resonance in Medicine, 41, 649-656. https://doi.org/10.1002/(SICI)1522-2594(199904)41:4%3C649::AIDMRM2%3E3.0.CO;2-G
  29. Mlynárik, V., Gambarota, G., Frenkel, H., Gruetter, R. (2006). Localized short-echo-time proton MR spectroscopy with full signal-intensity acquisition. Magnetic Resonance in Medicine, 56 (5), 965-970. https://doi.org/10.1002/mrm.21043
  30. Basser, P. J., Mattiello, J., Lebihan, D. (1994). Estimation of the effective self-diffusion tensor from the NMR spin echo. Journal of Magnetic Resonance, Series B, 103 (3), 247-254.
  31. Jiang, H., Van Zijl, P. C., Kim, J., Pearlson, G. D., Mori, S. (2006). DtiStudio: Resource program for diffusion tensor computation and fiber bundle tracking. Computer Methods and Programs in Biomedicine, 81 (2), 106-116. https://doi.org/10.1016/j.cmpb.2005.08.004
  32. Paxinos, G., Watson, C. (2007). The Rat Brain in Stereotaxic Coordinates. Elsevier, ISBN 978-0-12-547620-1.
  33. Yeh, F.-C., Verstynen, T. D., Wang, Y., Fernández-Miranda, J. C., Tseng, W.-Y. I. (2013). Deterministic diffusion fiber tracking improved by quantitative anisotropy. PloS One, 8 (11). https://doi.org/10.1371/journal.pone.0080713
  34. Yeh, F.-C., Panesar, S., Barrios, J., Fernandes, D., Abhinav, K., Meola, A., Fernandez-Miranda, J. C. (2019). Automatic removal of false connections in diffusion mri tractography using topology-informed pruning (TIP). Neurotherapeutics, 16 (1), 52-58. https://doi.org/10.1007/s13311-018-0663-y
  35. Veraart, J., Leergaard, T. B., Antonsen, B. T., Van Hecke, W., Blockx, I., Jeurissen, B., Jiang, Y., Van der Linden, A., Johnson, G. A., Verhoye, M., Sijbers, J. (2011). Population-averaged diffusion tensor imaging atlas of the Sprague Dawley rat brain. Neuroimage, 58 (4), 975-983. https://doi.org/10.1016/j.neuroimage.2011.06.063
  36. Papp, E. A., Leergaard, T. B., Calabrese, E., Johnson, G. A., Bjaalie, J. G. (2014). Waxholm Space atlas of the Sprague Dawley rat brain. NeuroImage, 97, 374-386. https://doi.org/10.1016/j.neuroimage.2014.04.001
  37. Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage, 31 (3), 1116-1128. https://doi.org/10.1016/j.neuroimage.2006.01.015
  38. Pluta, J., Avants, B. B., Glynn, S., Awate, S., Gee, J. C., Detre, J. A. (2009). Appearance and incomplete label matching for diffeomorphic template based hippocampus segmentation. Hippocampus, 19 (6), 565-571. https://doi.org/10.1002/hipo.20619
  39. Tournier, J.-D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D., Jeurissen, B., Yeh, C.-H., Connelly, A. (2019). MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage, 202 116137. https://doi.org/10.1016/j.neuroimage.2019.116137
  40. Provencher, S. W. (1993). Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magnetic Resonance in Medicine, 30 (6), 672-679. https://doi.org/10.1002/mrm.1910300604
  41. Xie, Z., Dong, Y., Maeda, U., Moir, R. D., Xia, W., Culley, D. J., Crosby, G., Tanzi, R. E. (2007). The inhalation anesthetic isoflurane induces a vicious cycle of apoptosis and amyloid β-protein accumulation. Journal of Neuroscience, 27 (6), 1247-1254. https://doi.org/10.1523/JNEUROSCI.5320-06.2007
  42. McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87 (3), 873-904. https://doi.org/10.1152/physrev.00041.2006
  43. Petersen, R. C., Jack, C. R., Xu, Y.-C., Waring, S. C., O’Brien, P. C., Smith, G. E., Ivnik, R. J., Tangalos, E. G., Boeve, B. F., Kokmen, E. (2000). Memory and MRI-based hippocampal volumes in aging and AD. Neurology, 54 (3), 581-581. https://doi.org/10.1212/WNL.54.3.581
  44. Morrison, J. H., Hof, P. R. (1997). Life and death of neurons in the aging brain. Science, 278 (5337), 412-419. https://doi.org/10.1126/science.278.5337.412
  45. Voevodskaya, O., Poulakis, K., Sundgren, P., Westen, D. V., Palmqvist, S., Wahlund, L., Stomrud, E., Hansson, O., Westmanet, E. (2019). Brain myoinositol as a potential marker of amyloid-related pathology. Neurology, 92 (5). https://doi.org/10.1212/WNL.0000000000006852
  46. Mlynárik, V., Cacquevel, M., Sun-Reimer, L., Janssens, S., Cudalbu, C., Lei, H., Schneider, B. L., Aebischer, P., Gruetteret, R. (2012). Proton and phosphorus magnetic resonance spectroscopy of a mouse model of Alzheimer’s disease. Journal of Alzheimer’s Disease, 31 (s3), S87-S99. https://doi.org/10.3233/jad-2012-112072
  47. Watanabe, T., Shiino, A., Akiguchi, I. (2012). Hippocampal metabolites and memory performances in patients with amnestic mild cognitive impairment and Alzheimer’s disease. Neurobiology of Learning and Memory, 97 (3), 289-293. https://doi.org/10.1016/j.nlm.2012.01.006
  48. Van Hecke, W., Emsell, L., Sunaert, S. (eds.) (2016). Diffusion Tensor Imaging: A Practical Handbook. Springer. https://doi.org/10.1007/978-1-4939-3118-7
  49. Descoteaux, M., Deriche, R., Knosche, T. R., Anwander, A. (2008). Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Transactions on Medical Imaging, 28 (2), 269-286. https://doi.org/10.1109/TMI.2008.2004424
  50. Budde, M. D., Janes, L., Gold, E., Turtzo, L. C., Frank, J. A. (2011). The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: Validation in the rat using Fourier analysis of stained tissue sections. Brain, 134 (8), 2248-2260. https://doi.org/10.1093/brain/awr161
  51. Xi, G., Hui, J., Zhang, Z., Liu, S., Zhang, X., Teng, G., Chan, K. C., Wu, E. X., Nie, B., Shan, B., Li, L., Reynolds, G. P. (2011). Learning and memory alterations are associated with hippocampal N-acetylaspartate in a rat model of depression as measured by 1H-MRS. PloS One, 6 (12), e28686. https://doi.org/10.1371/journal.pone.0028686
  52. Marjanska, M., Curran, G. L., Wengenack, T. M., Henry, P.-G., Bliss, R. L., Poduslo, J. F., Jack Jr, C. R., Ugurbil, K., Garwood, M. (2005). Monitoring disease progression in transgenic mouse models of Alzheimer’s disease with proton magnetic resonance spectroscopy. Proceedings of the National Academy of Sciences, 102 (33), 11906-11910. https://doi.org/10.1073/pnas.0505513102
  53. Márquez, F., Yassa, M. A. (2019). Neuroimaging biomarkers for Alzheimer’s disease. Molecular Neurodegeneration, 14 (1), 21. https://doi.org/10.1186/s13024-019-0325-5
  54. Veeraiah, P., Jansen, J. F. (2023). Multinuclear magnetic resonance spectroscopy at ultra-high-field: Assessing human cerebral metabolism in healthy and diseased states. Metabolites, 13 (4), 577. https://doi.org/10.3390/metabo13040577
  55. Block, W., Jessen, F., Träber, F., Flacke, S., Manka, C., Lamerichs, R., Keller, E., Heun, R., Schild, H. (2002). Regional N-acetylaspartate reduction in the hippocampus detected with fast proton magnetic resonance spectroscopic imaging in patients with Alzheimer disease. Archives of Neurology, 59 (5), 828-834. https://doi.org/10.1001/archneur.59.5.828
  56. Marjańska, M., McCarten, J. R., Hodges, J. S., Hemmy, L. S., Terpstra, M. (2019). Distinctive neurochemistry in Alzheimer’s disease via 7 T in vivo magnetic resonance spectroscopy. Journal of Alzheimer’s Disease, 68 (2), 559-569. https://doi.org/10.3233%2FJAD-180861
  57. Sumbalová, Z., Uličná, O., Kucharská, J., Rausová, Z., Vančová, O., Melicherčík, L., Tvrdík, T., Nemec, M., Kašparová, S. (2022). D-galactose-induced aging in rats - The effect of metformin on bioenergetics of brain, skeletal muscle and liver. Experimental Gerontology, 163, 111770. https://doi.org/10.1016/j.exger.2022.111770
  58. Melichercik, L., Tvrdik, T., Novakova, K., Nemec, M., Kalinak, M., Baciak, L., Kasparova, S. (2022). Huperzine aggravated neurochemical and volumetric changes induced by D-galactose in the model of neurodegeneration in rats. Neurochemistry International, 158, 105365. https://doi.org/10.1016/j.neuint.2022.105365
Language: English
Page range: 237 - 247
Submitted on: Jul 17, 2023
Accepted on: Sep 25, 2023
Published on: Oct 17, 2023
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2023 Tomáš Tvrdík, Ľubomír Melicherčík, Katarína Šebeková, Jakub Szabó, Marianna Maková, Daniel Gogola, Svatava Kašparová, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.