ISO. (2003). Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full — Part 1: General principles and requirements. ISO 5167-1:2003. https://www.iso.org/standard/28064.html
Nasiruddin, S., Singh, S. N. (2021). Performance evaluation of an innovative design modification of an orifice meter. Flow Measurement and Instrumentation, 80, 101944. https://doi.org/10.1016/j.flowmeasinst.2021.101944
Singh, R. K., Singh, S. N., Seshadri, V. (2010). Performance evaluation of orifice plate assemblies under non-standard conditions using CFD. Indian Journal of Engineering & Materials Sciences, 17, 397-406.
Abd, H. M., Alomar, O. R., Mohamed, I. A. (2019). Effects of varying orifice diameter and Reynolds number on discharge coefficient and wall pressure. Flow Measurement and Instrumentation, 65, 219-226. https://doi.org/10.1016/j.flowmeasinst.2019.01.004
Dayev, Z. A., Kairakbaev, A. K. (2019). Modeling of coefficient of contraction of differential pressure flowmeters. Flow Measurement and Instrumentation, 66, 128-131. https://doi.org/10.1016/j.flowmeasinst.2019.02.009
Tharakan, T. J., Rafeeque, T. A. (2016). The role of backpressure on discharge coefficient of sharp edged injection orifices. Aerospace Science and Technology, 49, 269-275. https://doi.org/10.1016/j.ast.2015.12.014
Beck, S. B. M., Mazille, J. (2002). A study of a pressure differential flow meter that is insensitive to inlet conditions. Flow Measurement and Instrumentation, 12 (5-6), 379-384. https://doi.org/10.1016/S0955-5986(01)00034-6
Kumar, P., Ming Bing, M. W. (2011). A CFD study of low pressure wet gas metering using slotted orifice meters. Flow Measurement and Instrumentation, 22 (1), 33-42. https://doi.org/10.1016/j.flowmeasinst.2010.12.002
Huang, S., Ma, T., Wang, D., Lin, Z. (2013). Study on discharge coefficient of perforated orifices as a new kind of flowmeter. Experimental Thermal and Fluid Science, 46, 74-83. https://doi.org/10.1016/j.expthermflusci.2012.11.022
Malavasi, S., Messa, G., Fratino, U., Pagano, A. (2012). On the pressure losses through perforated plates. Flow Measurement and Instrumentation, 28, 57-66. https://doi.org/10.1016/j.flowmeasinst.2012.07.006
Barros Filho, J. A., Santos, A. A. C., Navarro, M. A., Jordão, E. (2015). Effect of chamfer geometry on the pressure drop of perforated plates with thin orifices. Nuclear Engineering and Design, 284, 74-79. https://doi.org/10.1016/j.nucengdes.2014.12.009
Zhao, T., Zhang, J., Ma, L. (2011). A general structural design methodology for multi-hole orifices and its experimental application. Journal of Mechanical Science and Technology, 25, 2237-2246. https://doi.org/10.1007/s12206-011-0706-3
Đurđević, M., Bukurov, M., Tašin, S., Bikić, S. (2019). Experimental research of single-hole and multi-hole orifice gas flow meters. Flow Measurement and Instrumentation, 70, 101650. https://doi.org/10.1016/j.flowmeasinst.2019.101650
Đurđević, M., Bukurov, M., Tašin, S., Bikić, S. (2020). Numerical study of single-hole and multi-holes orifice flow parameters. Journal of Applied Fluid Mechanics, 14, 215-226. https://doi.org/10.47176/jafm.14.01.31472
Mehmood, M. A., Ibrahim, M. A., Ullah A., Inayat, M. H. (2019). CFD study of pressure loss characteristics of multi-holed orifice plates using central composite design. Flow Measurement and Instrumentation, 70, 101654. https://doi.org/10.1016/j.flowmeasinst.2019.101654
Raheem, A., Siddiqi, A. S. B., Ibrahim, A., Ullah, A., Inayat, M. H. (2021). Evaluation of multi-holed orifice flowmeters under developing flow conditions – An experimental study. Flow Measurement and Instrumentation, 79, 101894. https://doi.org/10.1016/j.flowmeasinst.2021.101894
El-Azm Aly, A. A., Chong, A., Nicolleau, F., Beck, S. (2010). Experimental study of the pressure drop after fractal-shaped orifices in turbulent pipe flows. Experimental Thermal and Fluid Science, 34 (1), 104-111. https://doi.org/10.1016/j.expthermflusci.2009.09.008
Hasečic, A., Imamovic, J., Bikic, S., Dzaferovic, E. (2021). Investigation of the contamination influence on the parameters of gas flow through multihole orifice flowmeter. IEEE Transactions on Instrumentation and Measurement, 70, 7501808. https://doi.org/10.1109/TIM.2021.3063198
Zedan, M. F., Teyssandier, R. G. (1990). Effect of errors in pressure tap locations on the discharge coefficient of a flange tapped orifice plate. Flow Measurement and Instrumentation, 1 (3), 141-148. https://doi.org/10.1016/0955-5986(9090003-P)
Erdal, A., Andersson, H. I. (1997). Numerical aspects of flow computation through orifices. Flow Measurement and Instrumentation, 8 (1), 27-37. https://doi.org/10.1016/S0955-5986(97)00017-4
Shah, M. S., Joshi, J. B., Kalsi, A. S., Prasad, C. S. R., Shukla, D. S. (2012). Analysis of flow through an orifice meter: CFD simulation. Chemical Engineering Science, 71, 300-309. https://doi.org/10.1016/j.ces.2011.11.022
Hubert, M., Vandervieren, E. (2008). An adjusted boxplot for skewed distributions. Computational Statistics & Data Analysis, 52 (12), 5186-5201. https://doi.org/10.1016/j.csda.2007.11.008