Allen, J., Murray, A. (2000). Variability of photoplethysmography peripheral pulse measurements at the ears, thumbs and toes. IEE Proceedings: Science, Measurement and Technology, 147 (6), 403–407. https://doi.org/10.1049/ip-smt:20000846
Yousef, Q., Reaz, M. B. I., Ali, M. A. M. (2012). The analysis of PPG morphology: Investigating the effects of aging on arterial compliance. Measurement Science Review, 12 (6), 266-271. https://doi.org/10.2478/v10048-012-0036-3
Nitzan, M., Ovadia-Blechman, Z. (2022). Physical and physiological interpretations of the PPG signal. In Photoplethysmography: Technology, Signal Analysis, and Applications, Kyriacou, P. A., Allen, J., Eds., Elsevier: London, United Kingdom, 319–339. ISBN 978-0-12-823374-0.
Béres, S., Holczer, L., Hejjel, L. (2019). On the minimal adequate sampling frequency of the photoplethysmogram for pulse rate monitoring and heart rate variability analysis in mobile and wearable technology. Measurement Science Review, 19 (5), 232-240. https://doi.org/10.2478/msr-2019-0030
Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas., 28 (3), R1–R39. https://doi.org/10.1088/0967-3334/28/3/R01
Celka, P., Charlton, P. H., Farukh, B., Chowienczyk, P., Alastruey, J. (2020). Influence of mental stress on the pulse wave features of photoplethysmograms. Healthc Technol. Lett., 7 (1), 7–12. https://doi.org/10.1049/htl.2019.0001
Brablik, J. et al. (2022). A Comparison of alternative approaches to MR cardiac triggering: A pilot study at 3 Tesla. IEEE Journal of Biomedical and Heath Informatics, 26 (6), 2594-2605. https://doi.org/10.1109/JBHI.2022.3146707
Moelker, A., Wielopolski, P. A., Pattynama, P. M. T. (2003). Relationship between magnetic field strength and magnetic-resonance-related acoustic noise levels. Magn. Reson. Mater. Phys. Biol. Med., 16, 52–55. https://doi.org/10.1007/s10334-003-0005-9
Glowacz, A. (2023). Thermographic fault diagnosis of electrical faults of commutator and induction motors. Engineering Applications of Artificial Intelligence, 121, 105962. https://doi.org/10.1016/j.engappai.2023.105962
Marques, J. P., Simons F. J., Webb, A. G. (2019). Low-field MRI: An MR physics perspective. Journal of Magnetic Resonance Imaging, 49 (6), 1528-1542. https://doi.org/10.1002/jmri.26637
Fischer, J. et al. (2020). Magnetic resonance imaging of the vocal fold oscillations with sub-millisecond temporal resolution. Magn. Reson. Med., 83 (2), 403-411. https://doi.org/10.1002/mrm.27982
Přibil, J., Přibilová, A., Frollo, I. (2020). First-step PPG signal analysis for evaluation of stress induced during scanning in the open-air MRI device. Sensors, 20 (12), 3532:1-3532:15. https://doi.org/10.3390/s20123532
Přibil, J., Přibilová, A., Frollo, I. (2021). Stress level detection and evaluation from phonation and PPG signals recorded in an open-air MRI device. Appl. Sci., 11 (24), 11748:1-11748:20, https://doi.org/10.3390/app112411748
Liu, M., Po, L. M., Fu, H. (2017). Cuffless blood pressure estimation based on photoplethysmography signal and its second derivative. Int J Comput Theory Eng, 9 (3), 202-206. https://doi.org/10.7763/IJCTE.2017.V9.1138
Přibil, J., Přibilová, A., Frollo, I. (2022). Experiment with cuffless estimation of arterial blood pressure from the signal sensed by the optical PPG sensor. Eng. Proc., 27 (1), 51:1-51:7. https://doi.org/10.3390/ecsa-9-13220
Kachuee, M., Kiani, M. M., Mohammadzade, H., Shabany, M. (2015). Cuff-less high-accuracy calibration-free blood pressure estimation using pulse transit time. In IEEE International Symposium on Circuits and Systems (ISCAS), 2015, 1006–1009.
Mousavi, S. et al. (2019). Blood pressure estimation from appropriate and inappropriate PPG signals using a whole-based method. Biomed. Signal Process. Control, 47, 196–206. https://doi.org/10.1016/j.bspc.2018.08.022
Teng, X. F., Zhang, Y. T. (2003). Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach. In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology, Cancun, Mexico, 17–21 September 2003, pp. 3156-3156.
Zhang, J. M., Wei, P. F; Li, Y. (2008). A LabVIEW based measure system for pulse wave transit time. In 5th International Conference on Information Technology and Applications in Biomedicine, 2008, 477-480.
Cattivelli, F. S., Garudadri, H. (2009). Noinvasive cuffless estimation of blood pressure from pulse arrival time and heart rate with adaptive calibration. In 6th International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, 3–5 June 2009; 114–119. https://doi.org/10.1109/BSN.2009.35
Wang, L., Lo, B. P., Yang, G. Z. (2007). Multichannel reflective PPG earpiece sensor with passive motion cancellation. IEEE Transactions on Biomedical Circuits and Systems, 1 (4), 235–241. https://doi.org/10.1109/TBCAS.2007.910900
Lazazzera, R., Belhaj, Y., Carrault, G. (2019). A new wearable device for blood pressure estimation using photoplethysmogram. Sensors, 19 (11), 2557:1-2557:18. https://doi.org/10.3390/s19112557
Padilla, J. et al. (2006). Assessment of relationships between blood pressure, pulse wave velocity and digital volume pulse. In Computers in Cardiology, IEEE, 893–896.
Szaj, W., Wojnarowska, W., Pajdo. B. (2021). First evaluation of the PTN-104 plethysmographic sensor for heart rate measurement. Measurement Science Review, 21 (5), 117-122. https://doi.org/10.2478/msr-2021-0017