References
- Ryu, H., Bae, D., Choi, J., Shabana, A. A. (2000). A compliant track link model for high‐speed, high‐ mobility tracked vehicles. International Journal for Numerical Methods in Engineering, 48, 1481-1502. https://doi.org/10.1002/1097-0207(20000810)48:10%3C1481::AIDNME959%3E3.0.CO;2-P
- Castellazzi, L., Tonoli, A., Amati, N., Galliera, E. (2017). A study on the role of powertrain system dynamics on vehicle driveability. Vehicle System Dynamics, 55 (7), 1012-1028. https://doi.org/10.1080/00423114.2017.1294699
- Wong, J. Y., Preston-Thomas, J. (1986). Parametric analysis of tracked vehicle performance using an advanced computer simulation model. Proceedings of the Institution of Mechanical Engineers, Part D: Transport Engineering, 200 (2), 101-114. https://doi.org/10.1243/PIME_PROC_1986_200_170_02
- Wong, J. Y. (1986). Computer aided analysis of the effects of design parameters on the performance of tracked vehicles. Journal of Terramechanics, 23 (2), 95-124. https://doi.org/10.1016/0022-4898(86)90017-0
- Adegbohun, F., von Jouanne, A., Phillips, B., Agamloh, E., Yokochi, A. (2021). High performance electric vehicle powertrain modeling, simulation and validation. Energies, 14 (5), 1943. https://doi.org/10.3390/en14051493
- Dalsjø, P. (2008). Hybrid electric propulsion for military vehicles - overview and status of the technology. FFI Report 2008/01220, Norwegian Defence Research Establishment (FFI), Kjeller, Norway. ISBN 978-82-464-1394-5.
- Dhir, A., Sankar, S. (1995). Assessment of tracked vehicle suspension system using a validated computer simulation model. Journal of Terramechanics, 32 (3), 127-149. https://doi.org/10.1016/0022-4898(95)00012-7
- Yi, K. S., Yi, S.-J. (2005). Real-time simulation of a high speed multibody tracked vehicle. International Journal of Automotive Technology, 6 (4), 351-357.
- MATLAB. (2018). version 9.7.0.1190202 (R2019b). The MathWorks Inc., Natick, Massachusetts.
- Janarthanan, B., Padmanabhan, C., Sujatha, C. (2012). Longitudinal dynamics of a tracked vehicle: Simulation and experiment. Journal of Terramechanics, 49 (2), 63-72. https://doi.org/10.1016/j.jterra.2011.11.001
- Kiyakli, A. O., Solmaz, H. (2018). Modeling of an electric vehicle with MATLAB/Simulink. International Journal of Automotive Science and Technology, 2 (4), 9-15. https://doi.org/10.30939/ijastech..475477
- Nabaglo, T., Kowal, J., Jurkiewicz, A. (2013). Construction of a parametrized tracked vehicle model and its simulation in MSC.ADAMS program. Journal of Low Frequency Noise, Vibration and Active Control, 32 (1-2), 167-173. https://doi.org/10.1260/0263-0923.32.1-2.167
- Kciuk, S., Mezyk, A. (2010). Modelling of tracked vehicle dynamics. Journal of Kones, 17 (1), 223-232.
- Madsen, J., Heyn, T., Negrut, D. (2018). Methods for tracked vehicle system modeling and simulation. Technical Report 2010-01.
- Blundell, M., Harty, D. (2004). Introduction. In The Multibody Systems Approach to Vehicle Dynamics. Butterworth-Heinemann, 1-22. ISBN 9780080473529.
- Yi, T. (2000). Vehicle dynamic simulations based on flexible and rigid multibody models. In SAE 2000 World Congress. https://doi.org/10.4271/2000-01-0114
- Balamurugan, S., Srinivasan, R. (2017). Tracked vehicle performance evaluation using multi body dynamics. Defence Science Journal, 67 (4), 476-480. https://doi.org/10.14429/dsj.67.11534
- Hryciów, Z., Rybak, P. (2019). Numerical research of the high-speed military vehicle track. AIP Conference Proceedings, 2078 (1), 020029. https://doi.org/10.1063/1.5092032
- Mahalingam, I., Padmanabhan, C. (2021). A novel alternate multibody model for the longitudinal and ride dynamics of a tracked vehicle. Vehicle System Dynamics, 59 (3), 433-457. https://doi.org/10.1080/00423114.2019.1693048
- Taratorkin, I., Derzhanskii, V., Taratorkin, A. (2016). Experimental determination of kinematic and power parameters at the tracked vehicle turning. Procedia Engineering, 150, 1368-1377. https://doi.org/10.1016/j.proeng.2016.07.331
- Zhang, Y., Qiu, M., Liu, X., Li, J., Song, H., Zhai, Y., Hu, H. (2021). Research on characteristics of tracked vehicle steering on slope. Mathematical Problems in Engineering, 2021, 3592902. https://doi.org/10.1155/2021/3592902
- Ogorkiewicz, R. (1991). Technology of Tanks. Jane’s Information Group, ISBN 978-0710605955.
- Muždeka, S. (2012). Osnovi borbenih vozila: udžbenik. Beograd, Serbia: Medija centar Odbrana, ISBN 9788633503693. (in Serbian)
- Ponorac, L., Grkić, A., Muždeka, S. (2021). Hybrid power trains for high-speed tracked vehicles. Mobility and Vehicle Mechanics, 47 (3), 35-48. https://doi.org/10.24874/mvm.2021.47.03.04
- Muždeka, S., Perić, S. (2012). Osnovi borbenih vozila: praktikum za vežbe. Beograd, Serbia: Medija centar Odbrana, ISBN 9788633503761. (in Serbian)
- Guo, T., Guo, J., Huang, B., Peng, H. (2019). Power consumption of tracked and wheeled small mobile robots on deformable terrains-model and experimental validation. Mechanism and Machine Theory, 133, 347-364. https://doi.org/10.1016/j.mechmachtheory.2018.12.00
- Stojkovic, V., Mikulic, D. (2002). The impact of a fixed kinematic turning radius of a tracked vehicle on the engine power required in a turn. Strojniski Vestnik - Journal of Mechanical Engineering, 48, 459-466.
- Vesic, M., Muzdeka, S. (2007). Analysis of influence of turning system kinematic scheme on turning power balance for high speed tracked vehicles. Vojnotehnicki Glasnik, 55 (2), 149-168. https://doi.org/10.5937/vojtehg0702149V
- Jimenez-Espadafor, F. J., Becerra Villanueva, J. A., Palomo Guerrero, D., Torres García, M., Carvajal Trujillo, E., Fernández Vacas, F. (2014). Measurement and analysis of instantaneous torque and angular velocity variations of a low speed two stroke diesel engine. Mechanical Systems and Signal Processing, 49 (1), 135-153. https://doi.org/10.1016/j.ymssp.2014.04.016
- Chen, C., Ma, T., Jin, H., Wu, Y., Hou, Z., Li, F. (2020). Torque and rotational speed sensor based on resistance and capacitive grating for rotational shaft of mechanical systems. Mechanical Systems and Signal Processing, 142, 106737. https://doi.org/10.1016/j.ymssp.2020.106737
- Ponorac L., Blagojević, I., Grkić, A. (2022). Analysis of powertrain’s workload during the turning process of a high-speed tracked vehicle. IOP Conference Series: Materials Science and Engineering, 1271, 12003. https://doi.org/10.1088/1757-899X/1271/1/012003