Have a personal or library account? Click to login

Experimental Validation of a High-Speed Tracked Vehicle Powertrain Simulation Model

Open Access
|Oct 2023

References

  1. Ryu, H., Bae, D., Choi, J., Shabana, A. A. (2000). A compliant track link model for high‐speed, high‐ mobility tracked vehicles. International Journal for Numerical Methods in Engineering, 48, 1481-1502. https://doi.org/10.1002/1097-0207(20000810)48:10%3C1481::AIDNME959%3E3.0.CO;2-P
  2. Castellazzi, L., Tonoli, A., Amati, N., Galliera, E. (2017). A study on the role of powertrain system dynamics on vehicle driveability. Vehicle System Dynamics, 55 (7), 1012-1028. https://doi.org/10.1080/00423114.2017.1294699
  3. Wong, J. Y., Preston-Thomas, J. (1986). Parametric analysis of tracked vehicle performance using an advanced computer simulation model. Proceedings of the Institution of Mechanical Engineers, Part D: Transport Engineering, 200 (2), 101-114. https://doi.org/10.1243/PIME_PROC_1986_200_170_02
  4. Wong, J. Y. (1986). Computer aided analysis of the effects of design parameters on the performance of tracked vehicles. Journal of Terramechanics, 23 (2), 95-124. https://doi.org/10.1016/0022-4898(86)90017-0
  5. Adegbohun, F., von Jouanne, A., Phillips, B., Agamloh, E., Yokochi, A. (2021). High performance electric vehicle powertrain modeling, simulation and validation. Energies, 14 (5), 1943. https://doi.org/10.3390/en14051493
  6. Dalsjø, P. (2008). Hybrid electric propulsion for military vehicles - overview and status of the technology. FFI Report 2008/01220, Norwegian Defence Research Establishment (FFI), Kjeller, Norway. ISBN 978-82-464-1394-5.
  7. Dhir, A., Sankar, S. (1995). Assessment of tracked vehicle suspension system using a validated computer simulation model. Journal of Terramechanics, 32 (3), 127-149. https://doi.org/10.1016/0022-4898(95)00012-7
  8. Yi, K. S., Yi, S.-J. (2005). Real-time simulation of a high speed multibody tracked vehicle. International Journal of Automotive Technology, 6 (4), 351-357.
  9. MATLAB. (2018). version 9.7.0.1190202 (R2019b). The MathWorks Inc., Natick, Massachusetts.
  10. Janarthanan, B., Padmanabhan, C., Sujatha, C. (2012). Longitudinal dynamics of a tracked vehicle: Simulation and experiment. Journal of Terramechanics, 49 (2), 63-72. https://doi.org/10.1016/j.jterra.2011.11.001
  11. Kiyakli, A. O., Solmaz, H. (2018). Modeling of an electric vehicle with MATLAB/Simulink. International Journal of Automotive Science and Technology, 2 (4), 9-15. https://doi.org/10.30939/ijastech..475477
  12. Nabaglo, T., Kowal, J., Jurkiewicz, A. (2013). Construction of a parametrized tracked vehicle model and its simulation in MSC.ADAMS program. Journal of Low Frequency Noise, Vibration and Active Control, 32 (1-2), 167-173. https://doi.org/10.1260/0263-0923.32.1-2.167
  13. Kciuk, S., Mezyk, A. (2010). Modelling of tracked vehicle dynamics. Journal of Kones, 17 (1), 223-232.
  14. Madsen, J., Heyn, T., Negrut, D. (2018). Methods for tracked vehicle system modeling and simulation. Technical Report 2010-01.
  15. Blundell, M., Harty, D. (2004). Introduction. In The Multibody Systems Approach to Vehicle Dynamics. Butterworth-Heinemann, 1-22. ISBN 9780080473529.
  16. Yi, T. (2000). Vehicle dynamic simulations based on flexible and rigid multibody models. In SAE 2000 World Congress. https://doi.org/10.4271/2000-01-0114
  17. Balamurugan, S., Srinivasan, R. (2017). Tracked vehicle performance evaluation using multi body dynamics. Defence Science Journal, 67 (4), 476-480. https://doi.org/10.14429/dsj.67.11534
  18. Hryciów, Z., Rybak, P. (2019). Numerical research of the high-speed military vehicle track. AIP Conference Proceedings, 2078 (1), 020029. https://doi.org/10.1063/1.5092032
  19. Mahalingam, I., Padmanabhan, C. (2021). A novel alternate multibody model for the longitudinal and ride dynamics of a tracked vehicle. Vehicle System Dynamics, 59 (3), 433-457. https://doi.org/10.1080/00423114.2019.1693048
  20. Taratorkin, I., Derzhanskii, V., Taratorkin, A. (2016). Experimental determination of kinematic and power parameters at the tracked vehicle turning. Procedia Engineering, 150, 1368-1377. https://doi.org/10.1016/j.proeng.2016.07.331
  21. Zhang, Y., Qiu, M., Liu, X., Li, J., Song, H., Zhai, Y., Hu, H. (2021). Research on characteristics of tracked vehicle steering on slope. Mathematical Problems in Engineering, 2021, 3592902. https://doi.org/10.1155/2021/3592902
  22. Ogorkiewicz, R. (1991). Technology of Tanks. Jane’s Information Group, ISBN 978-0710605955.
  23. Muždeka, S. (2012). Osnovi borbenih vozila: udžbenik. Beograd, Serbia: Medija centar Odbrana, ISBN 9788633503693. (in Serbian)
  24. Ponorac, L., Grkić, A., Muždeka, S. (2021). Hybrid power trains for high-speed tracked vehicles. Mobility and Vehicle Mechanics, 47 (3), 35-48. https://doi.org/10.24874/mvm.2021.47.03.04
  25. Muždeka, S., Perić, S. (2012). Osnovi borbenih vozila: praktikum za vežbe. Beograd, Serbia: Medija centar Odbrana, ISBN 9788633503761. (in Serbian)
  26. Guo, T., Guo, J., Huang, B., Peng, H. (2019). Power consumption of tracked and wheeled small mobile robots on deformable terrains-model and experimental validation. Mechanism and Machine Theory, 133, 347-364. https://doi.org/10.1016/j.mechmachtheory.2018.12.00
  27. Stojkovic, V., Mikulic, D. (2002). The impact of a fixed kinematic turning radius of a tracked vehicle on the engine power required in a turn. Strojniski Vestnik - Journal of Mechanical Engineering, 48, 459-466.
  28. Vesic, M., Muzdeka, S. (2007). Analysis of influence of turning system kinematic scheme on turning power balance for high speed tracked vehicles. Vojnotehnicki Glasnik, 55 (2), 149-168. https://doi.org/10.5937/vojtehg0702149V
  29. Jimenez-Espadafor, F. J., Becerra Villanueva, J. A., Palomo Guerrero, D., Torres García, M., Carvajal Trujillo, E., Fernández Vacas, F. (2014). Measurement and analysis of instantaneous torque and angular velocity variations of a low speed two stroke diesel engine. Mechanical Systems and Signal Processing, 49 (1), 135-153. https://doi.org/10.1016/j.ymssp.2014.04.016
  30. Chen, C., Ma, T., Jin, H., Wu, Y., Hou, Z., Li, F. (2020). Torque and rotational speed sensor based on resistance and capacitive grating for rotational shaft of mechanical systems. Mechanical Systems and Signal Processing, 142, 106737. https://doi.org/10.1016/j.ymssp.2020.106737
  31. Ponorac L., Blagojević, I., Grkić, A. (2022). Analysis of powertrain’s workload during the turning process of a high-speed tracked vehicle. IOP Conference Series: Materials Science and Engineering, 1271, 12003. https://doi.org/10.1088/1757-899X/1271/1/012003
Language: English
Page range: 192 - 201
Submitted on: May 15, 2023
Accepted on: Sep 18, 2023
Published on: Oct 17, 2023
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2023 Luka Ponorac, Ivan Blagojević, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.