Castellazzi, L., Tonoli, A., Amati, N., Galliera, E. (2017). A study on the role of powertrain system dynamics on vehicle driveability. Vehicle System Dynamics, 55 (7), 1012-1028. https://doi.org/10.1080/00423114.2017.1294699
Wong, J. Y., Preston-Thomas, J. (1986). Parametric analysis of tracked vehicle performance using an advanced computer simulation model. Proceedings of the Institution of Mechanical Engineers, Part D: Transport Engineering, 200 (2), 101-114. https://doi.org/10.1243/PIME_PROC_1986_200_170_02
Wong, J. Y. (1986). Computer aided analysis of the effects of design parameters on the performance of tracked vehicles. Journal of Terramechanics, 23 (2), 95-124. https://doi.org/10.1016/0022-4898(86)90017-0
Adegbohun, F., von Jouanne, A., Phillips, B., Agamloh, E., Yokochi, A. (2021). High performance electric vehicle powertrain modeling, simulation and validation. Energies, 14 (5), 1943. https://doi.org/10.3390/en14051493
Dalsjø, P. (2008). Hybrid electric propulsion for military vehicles - overview and status of the technology. FFI Report 2008/01220, Norwegian Defence Research Establishment (FFI), Kjeller, Norway. ISBN 978-82-464-1394-5.
Dhir, A., Sankar, S. (1995). Assessment of tracked vehicle suspension system using a validated computer simulation model. Journal of Terramechanics, 32 (3), 127-149. https://doi.org/10.1016/0022-4898(95)00012-7
Yi, K. S., Yi, S.-J. (2005). Real-time simulation of a high speed multibody tracked vehicle. International Journal of Automotive Technology, 6 (4), 351-357.
Janarthanan, B., Padmanabhan, C., Sujatha, C. (2012). Longitudinal dynamics of a tracked vehicle: Simulation and experiment. Journal of Terramechanics, 49 (2), 63-72. https://doi.org/10.1016/j.jterra.2011.11.001
Kiyakli, A. O., Solmaz, H. (2018). Modeling of an electric vehicle with MATLAB/Simulink. International Journal of Automotive Science and Technology, 2 (4), 9-15. https://doi.org/10.30939/ijastech..475477
Nabaglo, T., Kowal, J., Jurkiewicz, A. (2013). Construction of a parametrized tracked vehicle model and its simulation in MSC.ADAMS program. Journal of Low Frequency Noise, Vibration and Active Control, 32 (1-2), 167-173. https://doi.org/10.1260/0263-0923.32.1-2.167
Yi, T. (2000). Vehicle dynamic simulations based on flexible and rigid multibody models. In SAE 2000 World Congress. https://doi.org/10.4271/2000-01-0114
Balamurugan, S., Srinivasan, R. (2017). Tracked vehicle performance evaluation using multi body dynamics. Defence Science Journal, 67 (4), 476-480. https://doi.org/10.14429/dsj.67.11534
Hryciów, Z., Rybak, P. (2019). Numerical research of the high-speed military vehicle track. AIP Conference Proceedings, 2078 (1), 020029. https://doi.org/10.1063/1.5092032
Mahalingam, I., Padmanabhan, C. (2021). A novel alternate multibody model for the longitudinal and ride dynamics of a tracked vehicle. Vehicle System Dynamics, 59 (3), 433-457. https://doi.org/10.1080/00423114.2019.1693048
Taratorkin, I., Derzhanskii, V., Taratorkin, A. (2016). Experimental determination of kinematic and power parameters at the tracked vehicle turning. Procedia Engineering, 150, 1368-1377. https://doi.org/10.1016/j.proeng.2016.07.331
Zhang, Y., Qiu, M., Liu, X., Li, J., Song, H., Zhai, Y., Hu, H. (2021). Research on characteristics of tracked vehicle steering on slope. Mathematical Problems in Engineering, 2021, 3592902. https://doi.org/10.1155/2021/3592902
Ponorac, L., Grkić, A., Muždeka, S. (2021). Hybrid power trains for high-speed tracked vehicles. Mobility and Vehicle Mechanics, 47 (3), 35-48. https://doi.org/10.24874/mvm.2021.47.03.04
Guo, T., Guo, J., Huang, B., Peng, H. (2019). Power consumption of tracked and wheeled small mobile robots on deformable terrains-model and experimental validation. Mechanism and Machine Theory, 133, 347-364. https://doi.org/10.1016/j.mechmachtheory.2018.12.00
Stojkovic, V., Mikulic, D. (2002). The impact of a fixed kinematic turning radius of a tracked vehicle on the engine power required in a turn. Strojniski Vestnik - Journal of Mechanical Engineering, 48, 459-466.
Vesic, M., Muzdeka, S. (2007). Analysis of influence of turning system kinematic scheme on turning power balance for high speed tracked vehicles. Vojnotehnicki Glasnik, 55 (2), 149-168. https://doi.org/10.5937/vojtehg0702149V
Jimenez-Espadafor, F. J., Becerra Villanueva, J. A., Palomo Guerrero, D., Torres García, M., Carvajal Trujillo, E., Fernández Vacas, F. (2014). Measurement and analysis of instantaneous torque and angular velocity variations of a low speed two stroke diesel engine. Mechanical Systems and Signal Processing, 49 (1), 135-153. https://doi.org/10.1016/j.ymssp.2014.04.016
Chen, C., Ma, T., Jin, H., Wu, Y., Hou, Z., Li, F. (2020). Torque and rotational speed sensor based on resistance and capacitive grating for rotational shaft of mechanical systems. Mechanical Systems and Signal Processing, 142, 106737. https://doi.org/10.1016/j.ymssp.2020.106737
Ponorac L., Blagojević, I., Grkić, A. (2022). Analysis of powertrain’s workload during the turning process of a high-speed tracked vehicle. IOP Conference Series: Materials Science and Engineering, 1271, 12003. https://doi.org/10.1088/1757-899X/1271/1/012003