Have a personal or library account? Click to login
Glucose Concentration Monitoring Using Microstrip Spurline Sensor Cover

Glucose Concentration Monitoring Using Microstrip Spurline Sensor

Open Access
|Sep 2023

References

  1. Majeed, A., El-Sayed, A. A., Khoja, T., Alshamsan, R., Millett, C., Rawaf, S. (2014). Diabetes in the Middle-East and North Africa: An update. Diabetes Research and Clinical Practice, 103 (2), 218-222. https://doi.org/10.1016/j.diabres.2013.11.008
  2. Segar, M. W., Patel, K. V., Vaduganathan, M., Caughey, M. C., Butler, J., Fonarow, G. C., Grodin, J. L., McGuire, D. K., Pandey, A. (2020). Association of long-term change and variability in glycemia with risk of incident heart failure among patients with type 2 diabetes: A secondary analysis of the ACCORD trial. Diabetes Care, 43 (8), 1920-1928. https://doi.org/10.2337/dc19-2541
  3. Shokrekhodaei, M., Quinones, S. (2020). Review of non-invasive glucose sensing techniques: Optical, electrical and breath acetone. Sensors (Basel), 20 (5), 1251. https://doi.org/10.3390%2Fs20051251
  4. Uwadaira, Y., Ikehata, A., Momose, A., Miura, M. (2016). Identification of informative bands in the short-wavelength NIR region for non-invasive blood glucose measurement. Biomedical Optics Express, 7 (7), 2729-2737. https://doi.org/10.1364%2FBOE.7.002729
  5. Kino, S., Omori, S., Katagiri, T., Matsuura, Y. (2016). Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism. Biomedical Optics Express, 7 (2), 701-708. https://doi.org/10.1364%2FBOE.7.000701
  6. Sim, J. Y., Ahn, C. G., Jeong, E. J., Kim, B. K. (2018). In vivo microscopic photoacoustic spectroscopy for non-invasive glucose monitoring invulnerable to skin secretion products. Scientific Reports, 8 (1), 1059. https://doi.org/10.1038/s41598-018-19340-y
  7. Zheng, Y., Zhu, X., Wang, Z., Hou, Z., Gao, F., Nie, R., Cui, X., She, J., Peng, B. (2017). Noninvasive blood glucose detection using a miniature wearable raman spectroscopy system. Chinese Optics Letters, 15, 083001. https://opg.optica.org/col/viewmedia.cfm?uri=col-15-8-083001&seq=0
  8. Tiangco, C., Fon, D., Sardesai, N., Kostov, Y., Sevilla, F. III., Rao, G., Tolosa, L. (2017). Fiber optic biosensor for transdermal glucose based on the glucose binding protein. Sensors and Actuators B: Chemical, 242, 569-576. https://doi.org/10.1016/j.snb.2016.11.077
  9. Lan, Y. T., Kuang, Y. P., Zhou, L. P., Wu, G. Y., Gu, P. C., Wei, H. J., Chen, K. (2017). Noninvasive monitoring of blood glucose concentration in diabetic patients with optical coherence tomography. Laser Physics Letters, 14, 035603. http://dx.doi.org/10.1088/1612-202X/aa58c0
  10. Chen, H., Chen, X., Ma, S., Wu, X., Yang, W., Zhang, W., Li, X. (2018). Quantify glucose level in freshly diabetic’s blood by terahertz time-domain spectroscopy. Journal of Infrared, Millimeter, and Terahertz Waves, 39, 399-408. https://doi.org/10.1007/s10762-017-0462-2
  11. Omer, A. E., Shaker, G., Safavi-Naeini, S., Kokabi, H., Alquié, G., Deshours, F., Shubair, R. M. (2020). Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: Novel design utilizing a four-cell CSRR hexagonal configuration. Scientific Reports, 10 (1), 15200. https://doi.org/10.1038/s41598-020-72114-3
  12. Martin, F., Velez, P., Munoz-Enano, J., Su, L. (2023). Introduction to planar microwave sensors. In Planar Microwave Sensors. Wiley-IEEE Press, 1-64. https://doi.org/10.1002/9781119811060.ch1
  13. Gonzales, W. V., Mobashsher, A. T., Abbosh, A. (2019). The progress of glucose monitoring-a review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors (Basel), 19 (4), 800. https://doi.org/10.3390/s19040800
  14. Turgul, V., Kale, I. (2017). Simulating the effects of skin thickness and fingerprints to highlight problems with mon-invasive RF blood glucose sensing from fingertips. IEEE Sensors Journal, 17, 7553-7560. https://doi.org/10.1109/JSEN.2017.2757083
  15. Hofmann, M., Fischer, G., Weigel, R., Kissinger, D. (2013). Microwave-based noninvasive concentration measurements for biomedical applications. IEEE Transactions on Microwave Theory and Techniques, 61, 2195-2204. https://doi.org/10.1109/TMTT.2013.2250516
  16. Yilmaz, T., Foster, R., Hao, Y. (2019). Radio-frequency and microwave techniques for non-invasive measurement of blood glucose levels. Diagnostics, 9 (1), 6. https://doi.org/10.3390/diagnostics9010006
  17. Saha, S., Cano-Garcia, H., Sotiriou, I., Lipscombe, O., Gouzouasis, I., Koutsoupidou, M., Palikaras, G., Mackenzie, R., Reeve, T., Kosmas, P., Kallos, E. (2017). A glucose sensing system based on transmission measurements at millimetre waves using micro strip patch antennas. Scientific Reports, 7 (1), 6855. https://doi.org/10.1038/s41598-017-06926-1
  18. Saeedi, S., Chammani, S., Fischer, G. (2022). Feasibility study of glucose concentration measurement of aqueous solution using time domain reflected signals. Sensors (Basel), 22 (3), 1174. https://doi.org/10.3390/s22031174
  19. Mohamed, A. Z., Amar, R., Cherif, H., Hichem, A. (2021). Hyper-sensitive microwave sensor based on split ring resonator (SRR) for glucose measurement in water. Sensors and Actuators A: Physical, 321, 112601. https://doi.org/10.1016/j.sna.2021.112601
  20. Saeed, K., Shafique, M. F., Byrne, M. B., Hunter, I. C. (2012). Planar microwave sensors for complex permittivity characterization of materials and their applications. In Applied Measurement Systems. IntechOpen, 319-350. https://doi.org/10.5772/36302
  21. Alahnomi, R. A., Zakaria, Z., Yussof, Z. M., Althuwayb, A. A., Alhegazi, A., Alsariera, H., Rahman, N. A. (2021). Review of recent microwave planar resonator-based sensors: Techniques of complex permittivity extraction, applications, open challenges and future research directions. Sensors (Basel), 21 (7), 2267. https://doi.org/10.3390/s21072267
  22. Morales-Lovera, H. N., Olvera-Cervantes, J. L., Perez-Ramos, A. E., Corona-Chavez, A., Saavedra, C. E. (2022). Microstrip sensor and methodology for the determination of complex anisotropic permittivity using perturbation techniques. Scientific Reports, 12 (1), 2205. https://doi.org/10.1038/s41598-022-06259-8
  23. Jang, C., Park, J. K., Lee, H. J., Yun, G. H., Yook, J. G. (2020). Non-invasive fluidic glucose detection based on dual microwave complementary split ring resonators with a switching circuit for environmental effect elimination. IEEE Sensors Journal, 20, 8520-8527. https://doi.org/10.1109/JSEN.2020.2984779
  24. Kumar, A., Wang, C., Meng, F. Y., Zhou, Z. L., Zhao, M., Yan, G. F., Kim, E. S., Kim, N. Y. (2020). High-sensitivity, quantified, linear and mediator-free resonator-based microwave biosensor for glucose detection. Sensors (Basel), 20 (14), 4024. https://doi.org/10.3390/s20144024
  25. Satish, S. K., Anand, S. (2021). Demonstration of microstrip sensor for the feasibility study of noninvasive blood-glucose sensing. Mapan - Journal of Metrology Society of India, 6 (1), 193-199. https://doi.org/10.1007/s12647-020-00396-z
  26. Juan, C. G., Bronchalo, E., Potelon, B., Quendo, C., Muñoz, V. F., Ferrández-Vicente, J. M., Sabater-Navarro, J. M. (2023). On the selectivity of planar microwave glucose sensors with multicomponent solutions. Electronics, 12 (1), 191. https://doi.org/10.3390/electronics12010191
  27. Nakamura, M., Tajima, T., Seyama, M. (2022). Broadband dielectric spectroscopy for quantitative analysis of glucose and albumin in multicomponent aqueous solution. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 6 (1), 86-93. https://doi.org/10.1109/JERM.2021.3096150
  28. Bakam Nguenouho, O. S., Chevalier, A., Potelon, J., Benedicto, J., Quendo, C. (2022). Dielectric characterization and modelling of aqueous solutions involving sodium chloride and sucrose and application to the design of a bi-parameter RF-sensor. Scientific Reports, 12, 7209. https://doi.org/10.1038/s41598-022-11355-w
  29. Juan, C. G., Potelon, B., Quendo, C., García-Martínez, H., Ávila-Navarro, E., Bronchalo, E., Sabater-Navarro, J. M. (2021). Study of Qᵤ-based resonant microwave sensors and design of 3-D-printed devices dedicated to glucose monitoring. IEEE Transactions on Instrumentation and Measurement, 70, 1-16. https://doi.org/10.1109/TIM.2021.3122525
  30. Govind, G., Akhtar, M. J. (2020). Design of an ELC resonator-based reusable RF microfluidic sensor for blood glucose estimation. Scientific Reports, 10, 18842. https://doi.org/10.1038/s41598-020-75716-z
  31. Juan, C. G., Potelon, B., Quendo, C., Bronchalo, E. (2021). Microwave planar resonant solutions for glucose concentration sensing: A systematic review. Applied Sciences, 11, 7018. https://doi.org/10.3390/app11157018
  32. Turgul, V., Kale, I. (2018). Permittivity extraction of glucose solutions through artificial neural networks and non-invasive microwave glucose sensing. Sensors and Actuators A: Physical, 277, 65-72. https://doi.org/10.1016/j.sna.2018.03.041
  33. Odabashyan, L., Babajanyan, A., Baghdasaryan, Z., Kim, S., Kim, J., Friedman, B., Lee, J. H., Lee, K. (2019). Real-time noninvasive measurement of glucose concentration using a modified hilbert shaped microwave sensor. Sensors (Basel), 19 (24), 5525. https://doi.org/10.3390/s19245525
  34. Omkar, Yu, W., Huang, S. Y. (2018). T-shaped patterned microstrip line for moninvasive continuous glucose sensing. IEEE Microwave and Wireless Components Letters, 28 (10), 942-944. https://doi.org/10.1109/LMWC.2018.2861565
  35. Gharbi, M. E., Fernández-García, R., Gil, I. (2021). Textile antenna-sensor for in vitro diagnostics of diabetes. Electronics, 10, 1570. https://doi.org/10.3390/electronics10131570
  36. Omer, A. E., Shaker, G., Safavi-Naeini, S., Ngo, K., Shubair, R. M., Alquie, G., Deshours, F., Kokabi, H. (2021). Multiple-cell microfluidic dielectric resonator for liquid sensing applications. IEEE Sensors Journal, 5, 6094-6104. https://doi.org/10.1109/JSEN.2020.3041700
  37. Hanna, J., Tawk, Y., Azar, S., Ramadan, A. H., Dia, B., Shamieh, E., Zoghbi, S., Kanj, R., Costantine, J., Eid, A. A. (2022). Wearable flexible body matched electromagnetic sensors for personalized non-invasive glucose monitoring. Scientific Reports, 12 (1), 14885. https://doi.org/10.1038/s41598-022-19251-z
  38. Huang, S. Y., Omkar, Yoshida, Y., Garcia Inda, A. J., Xavier, C. X., Mu, W. C., Meng, Y. S. (2019). Microstrip line-based glucose sensor for noninvasive continuous monitoring using the main field for sensing and multivariable crosschecking. IEEE Sensors Journal, 19 (2), 535-547. https://doi.org/10.1109/JSEN.2018.2877691
  39. Zidane, M. A., Rouane, A., Hamouda, C., Amar, H. (2021). Hyper-sensitive microwave sensor based on split ring resonator (SRR) for glucose measurement in water. Sensors and Actuator A: Physical, 321, 112601. https://doi.org/10.1016/j.sna.2021.112601
  40. Baghelani, M., Abbasi, Z., Daneshmand, M., Light, P. E. (2020). Non-invasive continuous-time glucose monitoring system using a chipless printable sensor based on split ring microwave resonators. Scientific Reports, 10 (1), 12980. https://doi.org/10.1038/s41598-020-69547-1
  41. Mohammadi, S., Wiltshire, B., Jain, M. C., Nadaraja, A.V., Clements, A., Golovin, K., Roberts, D.J., Johnson, T., Foulds, I., Zarifi, M.H., (2020). Gold coplanar waveguide resonator integrated with a microfluidic channel for aqueous dielectric detection. IEEE Sensors Journal, 20 (17), 9825-9833. https://doi.org/10.1109/JSEN.2020.2991349
Language: English
Page range: 168 - 174
Submitted on: Mar 22, 2023
Accepted on: Jul 31, 2023
Published on: Sep 21, 2023
Published by: Slovak Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2023 Supakorn Harnsoongnoen, Benjaporn Buranrat, published by Slovak Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.