Have a personal or library account? Click to login
Attitude Control and Parameter Optimization: A Study on Hubble Space Telescope Cover

Attitude Control and Parameter Optimization: A Study on Hubble Space Telescope

Open Access
|Sep 2023

References

  1. Lohani, S., Joshi, R. (2020). Satellite network security. In 2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3). IEEE, 1-5. https://doi.org/10.1109/ICONC345789.2020.9117553
  2. Shiga, D. (2010). Happy birthday Hubble: The telescope that almost wasn’t. New Scientist, 206 (2756), 26-27. https://doi.org/10.1016/S0262-4079(10)60938-4
  3. Dougherty, H., Rodoni, C., Tompetrini, K., Nakashima, A. (1983). Space telescope pointing control. IFAC Proceedings Volumes, 16 (11), 15-24. https://doi.org/10.1016/S1474-6670(17)62184-0
  4. Nurre, G. S., Sharkey, J. P., Nelson, J. D., Bradley, A. J. (1995). Preservicing mission, on-orbit modifications to Hubble Space Telescope pointing control system. Journal of Guidance Control Dynamics, 18 (2), 222–229. https://doi.org/10.2514/3.21373
  5. Borase, R. P., Maghade, D., Sondkar, S., Pawar, S. (2021). A review of PID control, tuning methods and applications. International Journal of Dynamics and Control, 9 (2), 818-827. https://doi.org/10.1007/s40435-020-00665-4
  6. Mohammed, L., Ahmed, M. M. (2014). Spacecraft pitch pid controller tunning using Ziegler Nichols method. IOSR Journal of Electrical and Electronics Engineering, 9 (6), 62-67. https://www.iosrjournals.org/iosr-jeee/Papers/Vol9-issue6/Version-1/I09616267.pdf
  7. Joseph, E. A., Olaiya, O. O. (2017). Cohen-Coon PID tuning method: A better option to Ziegler-Nichols PID tuning method. International Journal of Recent Engineering Research and Development (IJRERD), 2 (11), 141-145. http://www.ijrerd.com/papers/v2-i11/29-IJRERD-B576.pdf
  8. Wilson, D. I. (2005). Relay-based PID tuning. Automation and Control, 10-12.
  9. Gawthrop, P. (1986). Self-tuning PID controllers: Algorithms and implementation. IEEE Transactions on Automatic Control, 31 (3), 201-209. https://doi.org/10.1109/TAC.1986.1104241
  10. Park, D., Yu, H., Xuan-Mung, N., Lee, J., Hong, S. K. (2019). Multicopter pid attitude controller gain autotuning through reinforcement learning neural networks. In Proceedings of the 2019 2nd International Conference on Control and Robot Technology. New York, US: Association for Computing Machinery, 80-84. https://doi.org/10.1145/3387304.3387327
  11. Wang, Y., Xiong, J., Lu, Z., Zhang, Y. (2019). The optimization of spacecraft attitude control parameters based on improved particle swarm algorithm. In 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). IEEE, 1691-1694. https://doi.org/10.1109/IMCEC46724.2019.8983855
  12. Jia, Y., Yang, X. (2016). Optimization of control parameters based on genetic algorithms for spacecraft attitude tracking with input constraints. Neurocomputing, 177, 334-341. https://doi.org/10.1016/j.neucom.2015.11.022
  13. Khoshrooz, A. R., Vahid, D. M., Mirshams, M., Homaeinezhad, M. R., Ahadi, A. H. (2012). Novel method on using evolutionary algorithms for pd optimal tuning. Applied Mechanics and Materials, 110-116, 4977-4984. https://doi.org/10.4028/www.scientific.net/AMM.110-116.4977
  14. Daw, M. S., Zayed, A. S., Allafi, N. I., Husain, R. A. (2017). Genetic algorithm based PID controller for attitude control of geostationary satellite. In International Conference & Exhibition for Geospatial Technologies – Libya GeoTec 2, 318-330. https://www.lrsgis.org.ly/libyageotec2/ar/paper/34-21-B5-Eng-rev.pdf
  15. Sidi, M. J. (1997). Spacecraft Dynamics and Control: A Practical Engineering Approach, Cambridge Aerospace Series No. 7. Cambridge University Press, ISBN 978-0521550727.
  16. Blanke, M., Larsen, M. B. (2010). Satellite Dynamics and Control in a Quaternion Formulation (2nd edition). Technical Report, Technical University of Denmark, Department of Electrical Engineering. https://backend.orbit.dtu.dk/ws/portalfiles/portal/98594729/Satdyn_mb_2010f.pdf
  17. Yang, Y. (2012). Spacecraft attitude determination and control: Quaternion based method. Annual Reviews in Control, 36 (2), 198-219. https://doi.org/10.1016/j.arcontrol.2012.09.003
  18. Hasha, M. D. (1987). Passive isolation/damping system for the Hubble Space Telescope reaction wheels. In NASA-Lyndon B. Johnson Space Center, The 21st Aerospace Mechanisms Symposium, 211-226. https://ntrs.nasa.gov/citations/19870020440
  19. Wertz, J. R. (ed.) (1978). Spacecraft Attitude Determination and Control (Astrophysics and Space Science Library, 73). ISBN 978-9027712042.
  20. Shahgholian, G., Shafaghi, P. (2010). State space modeling and eigenvalue analysis of the permanent magnet DC motor drive system. In 2010 2nd International Conference on Electronic Computer Technology. IEEE, 63-67. https://doi.org/10.1109/ICECTECH.2010.5479987
  21. Thienel, J. K., Sanner, R. M. (2007). Hubble Space Telescope angular velocity estimation during the robotic servicing mission. Journal of Guidance, Control, and Dynamics, 30 (1), 29-34. https://doi.org/10.2514/1.20591
  22. De Guia, N. (2012). Investigating various propulsion systems for an external attachment for a controlled manual de-orbit of the Hubble Space Telescope. https://digitalcommons.calpoly.edu/aerosp/63/
  23. Lee, D., Springmann, J., Spangelo, S., Cutler, J. (2011). Satellite dynamics simulator development using lie group variational integrator. In AIAA Modeling and Simulation Technologies Conference. AIAA 2011-6430. https://doi.org/10.2514/6.2011-6430
  24. Hur-Diaz, S., Wirzburger, J., Smith, D. (2008). Three axis control of the Hubble Space Telescope using two reaction wheels and magnetic torquer bars for science observations. In F. Landis Markley Astronautics Symposium. https://ntrs.nasa.gov/citations/20080023343
  25. Foster, C. L., Tinker, M. L., Nurre, G. S., Till, W. A. (1995). Solar-array-induced disturbance of the Hubble Space Telescope pointing system. Journal of Spacecraft and Rockets, 32 (4), 634-644. https://doi.org/10.2514/3.26664
Language: English
Page range: 146 - 153
Submitted on: Aug 11, 2022
Accepted on: Mar 28, 2023
Published on: Sep 21, 2023
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2023 Emre Sayin, Rahman Bitirgen, Ismail Bayezit, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.