Lohani, S., Joshi, R. (2020). Satellite network security. In 2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3). IEEE, 1-5. https://doi.org/10.1109/ICONC345789.2020.9117553
Nurre, G. S., Sharkey, J. P., Nelson, J. D., Bradley, A. J. (1995). Preservicing mission, on-orbit modifications to Hubble Space Telescope pointing control system. Journal of Guidance Control Dynamics, 18 (2), 222–229. https://doi.org/10.2514/3.21373
Borase, R. P., Maghade, D., Sondkar, S., Pawar, S. (2021). A review of PID control, tuning methods and applications. International Journal of Dynamics and Control, 9 (2), 818-827. https://doi.org/10.1007/s40435-020-00665-4
Joseph, E. A., Olaiya, O. O. (2017). Cohen-Coon PID tuning method: A better option to Ziegler-Nichols PID tuning method. International Journal of Recent Engineering Research and Development (IJRERD), 2 (11), 141-145. http://www.ijrerd.com/papers/v2-i11/29-IJRERD-B576.pdf
Park, D., Yu, H., Xuan-Mung, N., Lee, J., Hong, S. K. (2019). Multicopter pid attitude controller gain autotuning through reinforcement learning neural networks. In Proceedings of the 2019 2nd International Conference on Control and Robot Technology. New York, US: Association for Computing Machinery, 80-84. https://doi.org/10.1145/3387304.3387327
Wang, Y., Xiong, J., Lu, Z., Zhang, Y. (2019). The optimization of spacecraft attitude control parameters based on improved particle swarm algorithm. In 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). IEEE, 1691-1694. https://doi.org/10.1109/IMCEC46724.2019.8983855
Jia, Y., Yang, X. (2016). Optimization of control parameters based on genetic algorithms for spacecraft attitude tracking with input constraints. Neurocomputing, 177, 334-341. https://doi.org/10.1016/j.neucom.2015.11.022
Khoshrooz, A. R., Vahid, D. M., Mirshams, M., Homaeinezhad, M. R., Ahadi, A. H. (2012). Novel method on using evolutionary algorithms for pd optimal tuning. Applied Mechanics and Materials, 110-116, 4977-4984. https://doi.org/10.4028/www.scientific.net/AMM.110-116.4977
Daw, M. S., Zayed, A. S., Allafi, N. I., Husain, R. A. (2017). Genetic algorithm based PID controller for attitude control of geostationary satellite. In International Conference & Exhibition for Geospatial Technologies – Libya GeoTec 2, 318-330. https://www.lrsgis.org.ly/libyageotec2/ar/paper/34-21-B5-Eng-rev.pdf
Sidi, M. J. (1997). Spacecraft Dynamics and Control: A Practical Engineering Approach, Cambridge Aerospace Series No. 7. Cambridge University Press, ISBN 978-0521550727.
Blanke, M., Larsen, M. B. (2010). Satellite Dynamics and Control in a Quaternion Formulation (2nd edition). Technical Report, Technical University of Denmark, Department of Electrical Engineering. https://backend.orbit.dtu.dk/ws/portalfiles/portal/98594729/Satdyn_mb_2010f.pdf
Hasha, M. D. (1987). Passive isolation/damping system for the Hubble Space Telescope reaction wheels. In NASA-Lyndon B. Johnson Space Center, The 21st Aerospace Mechanisms Symposium, 211-226. https://ntrs.nasa.gov/citations/19870020440
Shahgholian, G., Shafaghi, P. (2010). State space modeling and eigenvalue analysis of the permanent magnet DC motor drive system. In 2010 2nd International Conference on Electronic Computer Technology. IEEE, 63-67. https://doi.org/10.1109/ICECTECH.2010.5479987
Thienel, J. K., Sanner, R. M. (2007). Hubble Space Telescope angular velocity estimation during the robotic servicing mission. Journal of Guidance, Control, and Dynamics, 30 (1), 29-34. https://doi.org/10.2514/1.20591
De Guia, N. (2012). Investigating various propulsion systems for an external attachment for a controlled manual de-orbit of the Hubble Space Telescope. https://digitalcommons.calpoly.edu/aerosp/63/
Lee, D., Springmann, J., Spangelo, S., Cutler, J. (2011). Satellite dynamics simulator development using lie group variational integrator. In AIAA Modeling and Simulation Technologies Conference. AIAA 2011-6430. https://doi.org/10.2514/6.2011-6430
Hur-Diaz, S., Wirzburger, J., Smith, D. (2008). Three axis control of the Hubble Space Telescope using two reaction wheels and magnetic torquer bars for science observations. In F. Landis Markley Astronautics Symposium. https://ntrs.nasa.gov/citations/20080023343
Foster, C. L., Tinker, M. L., Nurre, G. S., Till, W. A. (1995). Solar-array-induced disturbance of the Hubble Space Telescope pointing system. Journal of Spacecraft and Rockets, 32 (4), 634-644. https://doi.org/10.2514/3.26664