Have a personal or library account? Click to login
A Parameter Estimation Algorithm for Damped Real-value Sinusoid in Noise Cover

A Parameter Estimation Algorithm for Damped Real-value Sinusoid in Noise

By: Peng Chen,  Xin Su,  Ting’ao Shen and  Ling Mou  
Open Access
|Jul 2023

References

  1. Zielinski, T.P., Duda, K. (2011). Frequency and damping estimation methods - an overview. Metrology and Measurement Systems, 18 (4), 505-528. https://doi.org/10.2478/v10178-011-0051-y
  2. Beltran, C.F., Silva-Navarro, G., Trujillo-Franco, L.G. (2018). On-line parametric estimation of damped multiple frequency oscillations. Electric Power Systems Research, 154, 423-432. https://doi.org/10.1016/j.epsr.2017.09.013
  3. Zelong, M., Yaqing, T., Peng, C., Kui, W. (2021). Accurate frequency estimation of multiple complex and real sinusoids based on iterative interpolation. Digital Signal Processing, 117, 103173. https://doi.org/10.1016/j.dsp.2021.103173
  4. Peng, C., Qin, C., Zhijun, X., Xiaohui, C., Shaomei, Z. (2021). A frequency-time algorithm of parameter estimation for sinusoidal signal in noise. Measurement Science Review, 21 (1), 33-38. https://doi.org/10.2478/msr-2021-0005
  5. Chunhui, L., Lijun, S., Jiarong, L., Yang, Z., Haiyang, L., Huaxiang, W. (2021). Improvement of signal processing in Coriolis mass flowmeters for gas-liquid two-phase flow. Frontiers of Information Technology & Electronic Engineering, 22, 272-286. https://doi.org/10.1631/FITEE.1900558
  6. Tu, Y.Q., Shen, Y.L., Zhang, H.T., Li, M. (2016). Phase and frequency matching-based signal processing method for Coriolis mass flowmeters. Measurement Science Review, 16 (2), 62-67. https://doi.org/10.1515/msr-2016-0009
  7. Wang, L.J., Xue, Y.Y., Wang, T. (2017). Input variable selection for data-driven models of Coriolis flowmeters for two-phase flow measurement. Measurement Science and Technology, 28 (3), 035305. https://doi.org/10.1088/1361-6501/aa57d6
  8. Zelong, M., Yaqing, T., Peng, C., Kui, W. (2021). DFT-based multiple frequency estimation of real sinusoids by analytic signal generating. International Journal of Electronics, 108 (10),1790-1801. https://doi.org/10.1080/00207217.2021.1969441
  9. Quinn, B.G. (2016). Estimating parameters in noisy low frequency exponentially damped sinusoids and exponentials. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 4298-4302. https://doi.org/10.1109/ICASSP.2016.7472488
  10. Huang, G., Ni, A., Lu, W., Peng, H., Wang, J. (2021). Parameters measurement of multiple exponentially damped sinusoids with sub-nyquist sampling. IEEE Transactions on Circuits and Systems, 68 (7), 2710-2714. https://doi.org/10.1109/TCSII.2021.3055938
  11. Aboutanios, E. (2011). Estimating the parameters of sinusoids and decaying sinusoids in noise. IEEE Instrumentation and Measurement Magazine, 14 (2), 8-14. https://doi.org/10.1109/MIM.2011.5735249
  12. Aboutanios, E., Ye, S.L. (2014). Efficient iterative estimation of the parameters of a damped complex exponential in noise. IEEE Signal Processing Letters, 21 (8), 975-979. https://doi.org/10.1109/LSP.2014.2320927
  13. Qian, F.Y., Leung, S.H., Zhu, Y.S., Wong, W.K., Pao, D., Lau, W.H. (2012). Damped sinusoidal signals parameter estimation in frequency domain. Signal Processing, 92 (2), 381-391. https://doi.org/10.1016/j.sigpro.2011.08.003
  14. Wu, R.C., Chiang, C.T. (2010). Analysis of the exponential signal by the interpolated DFT algorithm. IEEE Transactions on Instrument and Measurement, 59 (12), 3306-3317. https://doi.org/10.1109/TIM.2010.2047301
  15. Chen, P., Tu, Y.Q., Chen, B.X., Li, M. (2019). A new parameter estimation method for damped real-value sinusoidal signals in noise. Measurement and Science Technology, 30, 125022. https://doi.org/10.1088/1361-6501/ab17bf
  16. Sarkar, T.K., Pereira, O. (1995). Using the matrix pencil method to estimate the parameters of a sum of complex exponentials. IEEE Antennas and Propagation Magazine, 37 (1), 48-55. https://doi.org/10.1109/74.370583
  17. Rahman, M.A., Yu, K.B. (1987). Total least squares approach for frequency estimation using linear prediction. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35 (10), 1440-1454. https://doi.org/10.1109/TASSP.1987.1165059
  18. Markovsky, I., Van Huffel, S. (2007). Overview of total least-squares methods. Signal Processing, 87 (10), 2283-2302. https://doi.org/10.1016/j.sigpro.2007.04.004
  19. Li, Y., Ray Liu, K.J., Razavilar, J. (1997). A parameter estimation scheme for damped sinusoidal signals based on low-rank Hankel approximation. IEEE Transactions on. Signal Processing, 45 (2), 481-486. https://doi.org/10.1109/78.554314
  20. Prasertwong, K., Mithulananthan, N. (2017). A new algorithm based on logarithm decrement to estimate the damping ratio for power system oscillation. In 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunicat. and Information Technology (ECTI-CON). IEEE, 517-520. https://doi.org/10.1109/ECTICon.2017.8096288
  21. Duda, K., Zielinski, T.P. (2013). Efficacy of the frequency and damping estimation of a real-value sinusoid Part 44 in a series of tutorials on instrumentation and measurement. IEEE Instrumentation and Measurement Magazine, 16 (2), 48-58. https://doi.org/10.1109/MIM.2013.6495682
  22. Yao, Y.X., Pandit, S.M. (1995). Cramer-Rao lower bounds for a damped sinusoidal process. IEEE Transactions on Signal Processing, 43 (4), 878-885. https://doi.org/10.1109/78.376840
Language: English
Page range: 99 - 105
Submitted on: Oct 21, 2022
Accepted on: Apr 18, 2023
Published on: Jul 16, 2023
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2023 Peng Chen, Xin Su, Ting’ao Shen, Ling Mou, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.