Have a personal or library account? Click to login
Modeling Extreme Values with Alpha Power Inverse Pareto Distribution Cover

Modeling Extreme Values with Alpha Power Inverse Pareto Distribution

Open Access
|May 2023

References

  1. [1] Hamdi, Y., Haigh, I. D., Parey, S., Wahl, T. (2021). Preface: Advances in extreme value analysis and application to natural hazards. Natural Hazards and Earth System Sciences, 21 (5), 1461-1465. https://doi.org/10.5194/nhess-21-1461-2021
  2. [2] Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12 (2), 171-178. https://www.jstor.org/stable/4615982
  3. [3] Marshall, A. W., Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika, 84 (3), 641-652. https://www.jstor.org/stable/2337585
  4. [4] Eugene, N, Lee, C, Famoye, F. (2002). Beta-normal distribution and its applications. Communications in Statistics - Theory and Methods, 31 (4), 497-512. https://doi.org/10.1081/STA-120003130
  5. [5] Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages. Statistical Methodology, 6 (1), 70-81. https://doi.org/10.1016/j.stamet.2008.04.001
  6. [6] Zografos, K., Balakrishnan, N. (2009). On families of beta- and generalized gamma-generated distributions and associated inference. Statistical Methodology, 6 (4), 344-362. https://doi.org/10.1016/j.stamet.2008.12.003
  7. [7] Alzaatreh, A., Lee, C., Famoye, F. (2013). A new method for generating families of continuous distributions. Metron, 71 (1), 63-79. https://doi.org/10.1007/s40300-013-0007-y
  8. [8] Mahdavi, A., Kundu, D. (2017). A new method for generating distributions with an application to exponential distribution. Communications in Statistics - Theory and Methods, 46 (13), 6543-6557. https://doi.org/10.1080/03610926.2015.1130839
  9. [9] Nassar, M., Alzaatreh, A., Mead, M., Abo-Kasem, O. (2017). Alpha power Weibull distribution: Properties and applications. Communications in Statistics - Theory and Methods, 46 (20), 10236-10252. https://doi.org/10.1080/03610926.2016.1231816
  10. [10] Dey, S., Ghosh, I., Kumar, D. (2019). Alpha-power transformed Lindley distribution: Properties and associated inference with application to earthquake data. Annals of Data Science, 6, 623-650. https://doi.org/10.1007/s40745-018-0163-2
  11. [11] Dey, S., Nassar, M., Kumar, D. (2019). Alpha power transformed inverse Lindley distribution: A distribution with an upside-down bathtub-shaped hazard function. Journal of Computational and Applied Mathematics, 348, 130-145. https://doi.org/10.1016/j.cam.2018.03.037
  12. [12] Ihtisham, S., Khalil, A., Manzoor, S., Khan, S. A., Ali, A. (2019). Alpha-Power Pareto distribution: Its properties and applications. PloS ONE, 14 (6), e0218027. https://doi.org/10.1371/journal.pone.0218027
  13. [13] Ali, M., Khalil, A., Ijaz, M., Saeed, N. (2021). Alpha-Power Exponentiated Inverse Rayleigh distribution and its applications to real and simulated data. PloS ONE, 16 (1), e0245253. https://doi.org/10.1371/journal.pone.0245253
  14. [14] Eghwerido, J.T., Nzei, L.C., Zelibe, S.C. (2022). The alpha power extended generalized exponential distribution. Journal of Statistics and Management Systems, 25 (1), 187-210. https://doi.org/10.1080/09720510.2021.1872692
  15. [15] Gharib, M., Mohammed, B. I., Aghel, W. E. R. (2017). Marshll-Olkin extended inverse Pareto distribution and its application. International Journal of Statistics and Probability, 6 (6), 71-84. https://doi.org/10.5539/ijsp.v6n6p71
  16. [16] Bashir, S., Naqvi, I. B. (2018). The Gompertz inverse Pareto distribution and extreme value theory. American Review of Mathematics and Statistics, 6 (2), 30-37. https://doi.org/10.15640/arms.v6n2a4
  17. [17] Shaked, M, Shanthikumar, J. G. (eds.) (2007). Stochastic Orders. Springer. https://doi.org/10.1007/978-0-387-34675-5
  18. [18] Srinivasa Rao, G., Kantam, R. R. L., Rosaiah, K., Pratapa Reddy, J. (2013). Estimation of stress–strength reliability from inverse Rayleigh distribution. Journal of Industrial and Production Engineering, 30 (4), 256-263. https://doi.org/10.1080/21681015.2013.828787
  19. [19] Guo, L., Gui, W. (2018). Bayesian and classical estimation of the inverse Pareto distribution and its application to strength-stress models. American Journal of Mathematical and Management Sciences, 37 (1), 80-92. https://doi.org/10.1080/01966324.2017.1383217
  20. [20] Bourguignon, M., Silva, R. B., Zea, L. M., Cordeiro, G. M. (2013). The kumaraswamy Pareto distribution. Journal of Statistical Theory and Applications, 12 (2), 129-144. https://doi.org/10.2991/jsta.2013.12.2.1
  21. [21] Aarset, M. V. (1987). How to identify a bathtub hazard rate. IEEE Transactions on Reliability, 36 (1), 106-108. https://doi.org/10.1109/TR.1987.5222310
Language: English
Page range: 55 - 62
Submitted on: Aug 3, 2022
Accepted on: Mar 20, 2023
Published on: May 3, 2023
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2023 Shumaila Ihtisham, Sadaf Manzoor, Alamgir Khalil, Sareer Badshah, Muhammad Ijaz, Hadia Atta, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.