Have a personal or library account? Click to login
Optimization of Support Vector Machines for Prediction of Parkinson’s Disease Cover

Optimization of Support Vector Machines for Prediction of Parkinson’s Disease

Open Access
|Mar 2023

References

  1. [1] T. Güneş, ‘Parkinson hastalığı nedir? Belirtileri nelerdir?’ https://www.medicalpark.com.tr/parkinson-hastaligi/hg-1976 (accessed Jan. 12, 2022).
  2. [2] C. Marras et al., ‘Prevalence of Parkinson’s disease across North America’, NPJ Parkinson’s disease, vol. 4, no. 1, pp. 1–7, 2018.10.1038/s41531-018-0058-0603950530003140
  3. [3] D. Kaya, ‘Optimization of SVM parameters with hybrid CS-PSO algorithms for Parkinson’s disease in LabVIEW environment’, Parkinson’s Disease, vol. 2019, 2019.10.1155/2019/2513053652579931191900
  4. [4] A. Narı̇ n, ‘Effect of features selected by ant colony algorithm in performance of parkinson’s patients’, Duzce University Journal of Science and Technology, vol. 8, no. 4, pp. 2443–2454, Oct. 2020, doi: 10.29130/dubited.650958.10.29130/dubited.650958
  5. [5] S. Ayhan and Ş. Erdoğmuş, ‘Kernel function selection for the solution of classification problems via support vector machines’, Eskişehir Osmangazi University Journal of Economics and Administrative Sciences, vol. 9, no. 1, pp. 175–198, 2014.
  6. [6] S. Osowski, K. Siwek, and T. Markiewicz, ‘MLP and SVM Networks-a Comparative Study’, in Proceedings of the 6th Nordic Signal Processing Symposium, 2004. NORSIG 2004., 2004, pp. 37–40.
  7. [7] I. Nitze, U. Schulthess, and H. Asche, ‘Comparison of machine learning algorithms random forest, artificial neural network and support vector machine to maximum likelihood for supervised crop type classification’, Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, vol. 79, p. 3540, 2012.
  8. [8] X.-S. Yang, Engineering Optimization: An Introduction with Metaheuristic Applications. John Wiley & Sons, 2010.10.1002/9780470640425
  9. [9] H. Han and W. Houjun, ‘Study on power transformer protection based on chaos particle swarm optimization’, in IEEE 2011 10th International Conference on Electronic Measurement & Instruments, 2011, vol. 4, pp. 247–250.10.1109/ICEMI.2011.6037988
  10. [10] J. Wang, G. Shan, Q. Zhang, and X. Duan, ‘Analog circuit Fault Diagnosis Method Based on CPSO-SVM’, in 2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, 2011, pp. 465–468.10.1109/ICQR2MSE.2011.5976654
  11. [11] O. Ceylan and G. Taşkın, ‘SVM parameter selection based on harmony search with an application to hyperspectral image classification’, in 2016 24th Signal Processing and Communication Application Conference (SIU), 2016, pp. 657–660.10.1109/SIU.2016.7495825
  12. [12] O. Ceylan and G. Taşkın, ‘A Comparison of differential evolution and harmony search methods for SVM model selection in hyperspectral image classification’, in 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2016, pp. 485–488.10.1109/IGARSS.2016.7729120
  13. [13] I. Aljarah, A. M. Al-Zoubi, H. Faris, M. A. Hassonah, S. Mirjalili, and H. Saadeh, ‘Simultaneous Feature Selection and Support Vector Machine Optimization Using the Grasshopper Optimization Algorithm’, Cogn Comput, vol. 10, no. 3, pp. 478–495, Jun. 2018, doi: 10.1007/s12559-017-9542-9.10.1007/s12559-017-9542-9
  14. [14] X. Wu, ‘Research on the Influence of Crossover Probability and Mutation Probability in GA-SVM Model’, in 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), 2019, pp. 1–7.10.1109/ICEIEC.2019.8784498
  15. [15] L. Jun, D. Lixin, and X. Ying, ‘Differential evolution based parameters selection for support vector machine’, in 2013 Ninth International Conference on Computational Intelligence and Security, 2013, pp. 284–288.10.1109/CIS.2013.67
  16. [16] L. Shen et al., ‘Evolving Support Vector Machines using Fruit Fly Optimization for Medical Data Classification’, Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.10.1016/j.knosys.2016.01.002
  17. [17] B. Tezcan, ‘Determination of Support Vector Machine Parameters By Meta Heuristic Optimization Algorithms’, Master’s Thesis, Selçuk University, Turkey, 2018.
  18. [18] X.-S. Yang, ‘A New Metaheuristic Bat-Inspired Algorithm’, in Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Springer, 2010, pp. 65–74.10.1007/978-3-642-12538-6_6
  19. [19] B. Liu, L. Wang, Y.-H. Jin, F. Tang, and D.-X. Huang, ‘Improved particle swarm optimization combined with chaos’, Chaos, Solitons & Fractals, vol. 25, no. 5, pp. 1261–1271, 2005.
  20. [20] Z. W. Geem, J. H. Kim, and G. V. Loganathan, ‘A new heuristic optimization algorithm: harmony search’, simulation, vol. 76, no. 2, pp. 60–68, 2001.10.1177/003754970107600201
  21. [21] M. Little, P. McSharry, S. Roberts, D. Costello, and I. Moroz, ‘Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection’, Nature Precedings, pp. 1–1, 2007.10.1038/npre.2007.326.1
  22. [22] L. Naranjo, C. J. Perez, Y. Campos-Roca, and J. Martin, ‘Addressing voice recording replications for Parkinson’s disease detection’, Expert Systems with Applications, vol. 46, pp. 286–292, 2016.10.1016/j.eswa.2015.10.034
  23. [23] L. Naranjo, C. J. Perez, J. Martin, and Y. Campos-Roca, ‘A two-stage variable selection and classification approach for Parkinson’s disease detection by using voice recording replications’, Computer methods and programs in biomedicine, vol. 142, pp. 147–156, 2017.10.1016/j.cmpb.2017.02.01928325442
  24. [24] V. Vapnik, The nature of Statistical Learning Theory. Springer Science & Business Media, 1999.10.1007/978-1-4757-3264-1
  25. [25] T. Kavzoğlu and İ. Çölkesen, ‘Investigation of the effects of kernel functions in satellite image classification using support vector machines’, Gebze High Technology Institute The Journal of Map, vol. 144, pp. 73–82, 2010.
  26. [26] L. Wang, Support Vector Machines: Theory and Applications, vol. 177. Springer Science & Business Media, 2005.10.1007/b95439
  27. [27] R. M. Brigham, E. K. V. Kalko, G. Jones, S. Parsons, and H. Limpens, ‘Bat echolocation research: tools, techniques and analysis’, Bat Conservation International. Austin, Texas, 2004.
  28. [28] L. L. Kamal, ‘Training Artificial Neural Networks Using Bat Optimization Algorithm’, Master’s Thesis, Selçuk University, Turkey, 2018.
  29. [29] A. Tharwat, A. E. Hassanien, and B. E. Elnaghi, ‘A BA-Based Algorithm for Parameter Optimization of Support Vector Machine’, Pattern Recognition Letters, vol. 93, pp. 13–22, 2017.10.1016/j.patrec.2016.10.007
  30. [30] X.-S. Yang, Nature-inspired optimization algorithms. Academic Press, 2020.10.1016/B978-0-12-821986-7.00018-4
  31. [31] X.-S. Yang and X. He, ‘Bat Algorithm: Literature Review and Applications’, International Journal of Bio-inspired Computation, vol. 5, no. 3, pp. 141–149, 2013.10.1504/IJBIC.2013.055093
  32. [32] J. Kennedy and R. Eberhart, ‘Particle swarm optimization’, in Proceedings of ICNN’95-international conference on neural networks, 1995, vol. 4, pp. 1942– 1948.
  33. [33] X. Gao, P. Yu, W. Mao, and D. Peng, ‘Classification of hyperspectral image based on SVM optimized by a new particle swarm optimization’, in 2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, 2012, pp. 1–4.10.1109/RSETE.2012.6260436
  34. [34] Y. Cheng, Y. Fu, and G. Gong, ‘A Hybrid Support Vector Regression Based on Chaotic Particle Swarm Optimization Algorithm in Forecasting Financial Returns’, in 2010 2nd International Conference on Information Engineering and Computer Science, Dec. 2010, pp. 1–4. doi: 10.1109/ICIECS.2010.5678364.10.1109/ICIECS.2010.5678364
  35. [35] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, 1992.10.7551/mitpress/1090.001.0001
  36. [36] H. Dawid, Adaptive learning by genetic algorithms: Analytical results and applications to economic models. Springer Science & Business Media, 2011.
  37. [37] E. Ayhan, ‘Blood supply chain distribution network modeling and solution with hybrid genetic algorithm’, PhD Thesis, Yıldız Technical University, Turkey, 2021.
  38. [38] B. Bolat, K. O. EROL, and C. E. İMRAK, ‘Genetic algorithms in engineering applications and the Function of operators’, Sigma, vol. 4, pp. 264–271, 2004.
  39. [39] E. Okur and M. Atlas, ‘Solution of vehicle routing problem with genetic algorithm’, Anadolu University Journal of Social Sciences, vol. 20, no. 3, Art. no. 3, Sep. 2020, doi: 10.18037/ausbd.801768.10.18037/ausbd.801768
  40. [40] S. Çolak, ‘Genetik Algoritmalar Yardımı ile Gezgin Satıcı Probleminin Çözümü Üzerine Bir Uygulama’, Journal of the Cukurova University Institute of Social Sciences, vol. 19, no. 3, Art. no. 3, Sep. 2010.
  41. [41] T.-Y. Chen and C.-J. CHEN, ‘Improvements of simple genetic algorithm in structural design’, International Journal for Numerical Methods in Engineering, vol. 40, no. 7, pp. 1323–1334, 1997.
  42. [42] A. Kalinli and Ö. Aksu, ‘Genetic algorithm model based on dominant gene selection operator’, 2011.
  43. [43] S. Güngör, ‘Harmony Search Algorithm for Team Formation Problems: An Application in Kayserispor Football Team’, Master’s Thesis, Eriyes University, Turkey, 2015.
  44. [44] M. T. Ayvaz, H. Karahan, and G. Gurarslan, ‘Su dağıtım şebekelerinin armoni araştırması optimizasyon tekniği ile optimum tasarımı, 5’, 2007.
Language: English
Page range: 1 - 10
Submitted on: Mar 14, 2022
|
Accepted on: Feb 2, 2023
|
Published on: Mar 7, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2023 Turgut Özseven, Zübeyir Şükrü Özkorucu, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.