Have a personal or library account? Click to login
ISO Linear Calibration and Measurement Uncertainty of the Result Obtained With the Calibrated Instrument Cover

ISO Linear Calibration and Measurement Uncertainty of the Result Obtained With the Calibrated Instrument

Open Access
|Oct 2022

References

  1. [1] JCGM. (2008). Evaluation of measurement data — Guide to the expression of uncertainty in measurement. JCGM 100:2008 (GUM 1995 with minor corrections).
  2. [2] JCGM. (2008). Evaluation of measurement data — Supplement 1 to the Guide to the expression of uncertainty in measurement — Propagation of distributions using a Monte Carlo method. JCGM 101:2008.
  3. [3] JCGM. (2011). Evaluation of measurement data — Supplement 2 to the Guide to the expression of uncertainty in measurement — Extension to any number of output quantities. JCGM 102:2011.
  4. [4] JCGM. (2012). International vocabulary of metrology – Basic and general concepts and associated terms (VIM), 3rd Edition. JCGM 200:2012.
  5. [5] ISO. (2010). Determination and use of straight-line calibration functions. ISO/TS 28037:2010.
  6. [6] ISO. (2006). Statistics – Vocabulary and symbols – Part 1: General statistical terms and terms used in probability. ISO 3534-1:2006.
  7. [7] European co-operation for Accredidation. (2013). Evaluation of the uncertainty of measurement in calibration. EA-4/02 M:2013.
  8. [8] Balsamo, A., Mana, G., Pennecchi, F. (2006). The expression of uncertainty in non-linear parameter estimation. Metrologia, 43 (5), 396. https://doi.org/10.1088/0026-1394/43/5/009
  9. [9] Bartel, T., Stoudt, S., Possolo, A. (2016). Force calibration using errors-in-variables regression and Monte Carlo uncertainty evaluation. Metrologia, 53 (3), 965. https://doi.org/10.1088/0026-1394/53/3/965
  10. [10] Carroll, R. J., Ruppert, D., Stefanski, L. A., Crainiceanu, C. M. (2006). Measurement Error in Nonlinear Models: A Modern Perspective. Chapman and Hall/CRC, ISBN 9781584886334.
  11. [11] Casella, G., Berger, R. L. (2002). Statistical Inference, Second Edition. Duxbury, ISBN 0-534-24312-6.
  12. [12] Cecelski, C. E., Toman, B., Liu, F. H., Meija, J., Pos-solo, A. (2022). Errors-in-variables calibration with dark uncertainty. Metrologia, 59 (4), 045002. https://doi.org/10.1088/1681-7575/ac711c
  13. [13] Cox, M., Forbes, A., Harris, P., Smith, I. (2004). The classification and solution of regression problems for calibration. NPL Report CMSC 24/03, National Physical Laboratory, Teddington, UK.
  14. [14] Cox, D. R., Snell, E. J. (1968). A general definition of residuals. Journal of the Royal Statistical Society: Series B (Methodological), 30 (2), 248–265.
  15. [15] Fuller, W. A. (2009). Measurement Error Models. John Wiley & Sons, ISBN 9780470317334.
  16. [16] Guenther, F. R., Possolo, A. (2011). Calibration and uncertainty assessment for certified reference gas mixtures. Analytical and Bioanalytical Chemistry, 399 (1), 489–500. https://doi.org/10.1007/s00216-010-4379-z
  17. [17] Klauenberg, K., Martens, S., Bošnjaković, A., Cox, M. G., van der Veen, A. M., Elster, C. (2022). The GUM perspective on straight-line errors-in-variables regression. Measurement, 187, 110340. https://doi.org/10.1016/j.measurement.2021.110340
  18. [18] Kotz, S., Nadarajah, S. (2004). Multivariate t Distributions and Their Applications. Cambridge University Press, ISBN 9780511550683. https://doi.org/10.1017/CBO9780511550683
  19. [19] Kubáček, L. (1988). Foundations of Estimation Theory. Elsevier, ISBN 978-0444989413.
  20. [20] Kubáček, L. (1995). On a linearization of regression models. Applications of Mathematics, 40 (1), 61–78.
  21. [21] Kukush, A., Van Huffel, S. (2004). Consistency of elementwise-weighted total least squares estimator in a multivariate errors-in-variables model AX = B. Metrika, 59 (1), 75–97. https://doi.org/10.1007/s001840300272
  22. [22] Krystek, M., Anton, M. (2007). A weighted total least-squares algorithm for fitting a straight line. Measurement Science and Technology, 18 (11), 3438. https://doi.org/10.1088/0957-0233/18/11/025
  23. [23] Lira, I., Elster, C., Wöger, W. (2007). Probabilistic and least-squares inference of the parameters of a straight-line model. Metrologia, 44 (5), 379. https://doi.org/10.1088/0026-1394/44/5/014
  24. [24] Malengo, A., Pennecchi, F. (2013). A weighted total least-squares algorithm for any fitting model with correlated variables. Metrologia, 50 (6), 654. https://doi.org/10.1088/0026-1394/50/6/654
  25. [25] Markovsky, I., Van Huffel, S. (2007). Overview of total least-squares methods. Signal Processing, 87 (10), 2283–2302. https://doi.org/10.1016/j.sigpro.2007.04.004
  26. [26] Milton, M., Harris, P., Smith, I., Brown, A., Goody, B. (2006). Implementation of a generalized least-squares method for determining calibration curves from data with general uncertainty structures. Metrologia, 43 (4), S291. https://doi.org/10.1088/0026-1394/43/4/S17
  27. [27] Murphy, S. A., Van Der Vaart, A. W. (1996). Likelihood inference in the errors-in-variables model. Journal of Multivariate Analysis, 59 (1), 81–108. https://doi.org/10.1006/jmva.1996.0055
  28. [28] Osborne, C. (1991). Statistical calibration: A review. International Statistical Review/Revue Internationale de Statistique, 59 (3), 309–336. https://doi.org/10.2307/1403690
  29. [29] Possolo, A., Iyer, H. K. (2017). Invited article: Concepts and tools for the evaluation of measurement uncertainty. Review of Scientific Instruments, 88 (1), 011301. https://doi.org/10.1063/1.4974274
  30. [30] National Physical Laboratory. (2010). Software to support ISO/TS 28037:2010E. https://www.npl.co.uk/resources/software/iso-ts-28037-2010e
  31. [31] Stoudt, S., Pintar, A., Possolo, A. (2021). Uncertainty evaluations from small datasets. Metrologia, 58 (1), 015014. https://doi.org/10.1088/1681-7575/abd372
  32. [32] Witkovský, V. (2016). Numerical inversion of a characteristic function: An alternative tool to form the probability distribution of output quantity in linear measurement models. Acta IMEKO, 5 (3), 32–44. http://dx.doi.org/10.21014/acta_imeko.v5i3.382
  33. [33] Witkovský, V., Wimmer, G. (2018). Generalized polynomial comparative calibration: Parameter estimation and applications. In Advances in Measurements and Instrumentation: Reviews, Vol. 1. IFSA Publishing, 15–52. ISBN 978-84-09-07321-4.
  34. [34] Witkovský, V., Wimmer, G. (2021). Exact confidence intervals for parameters in linear models with parameter constraints. In Measurement 2021: 13th International Conference on Measurement. Bratislava, Slovakia: Institute of Measurement Science, SAS, 22–25. https://doi.org/10.23919/Measurement52780.2021.9446783
  35. [35] Witkovský, V., Wimmer, G. (2022). PolyCal – MATLAB algorithm for comparative polynomial calibration and its applications. In Advanced Mathematical and Computational Tools in Metrology and Testing XII: Series on Advances in Mathematics for Applied Sciences – Vol. 90. World Scientific, 501–512. https://doi.org/http://dx.doi.org/10.1142/9789811242380_0033
  36. [36] Witkovský, V. (2022). CharFunTool: The characteristic functions toolbox (MATLAB). https://github.com/witkovsky/CharFunTool
Language: English
Page range: 293 - 307
Submitted on: Apr 28, 2022
|
Accepted on: Sep 21, 2022
|
Published on: Oct 13, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Jakub Palenčár, Rudolf Palenčár, Miroslav Chytil, Gejza Wimmer, Gejza Wimmer, Viktor Witkovský, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.