Have a personal or library account? Click to login
On Modelling of Maximum Electromagnetic Field in Electrically Large Enclosures Cover

On Modelling of Maximum Electromagnetic Field in Electrically Large Enclosures

Open Access
|Aug 2022

References

  1. [1] Hill, D.A. (1998). Plane wave integral representation for fields in reverberation chambers. IEEE Transactions on Electromagnetic Compatibility, 40 (3), 209-217. https://doi.org/10.1109/15.709418
  2. [2] Ladbury, J., Koepke, G., Camell, D. (1999). Evaluation of the NASA langley research center mode-stirred chamber facility. NIST Technical Note 1508.10.6028/NIST.TN.1508
  3. [3] Orjubin, G. (2007). Maximum field inside a reverberation chamber modeled by the generalized extreme value distribution. IEEE Transactions on Electromagnetic Compatibility, 49 (1), 104-113. https://doi.org/10.1109/TEMC.2006.888172
  4. [4] Gifuni, A. (2011). Deterministic approach to estimate the upper bound of the electric field in a reverberation chamber. IEEE Transactions on Electromagnetic Compatibility, 53 (3), 570-578. https://doi.org/10.1109/TEMC.2010.2102359
  5. [5] Hu, P., Zhou, Z., Zhou, X., Sheng, M. (2020). Maximum field strength within reverberation chamber: A comparison study. In 6th Global Electromagnetic Compatibility Conference (GEMCCON). IEEE. https://doi.org/10.1109/GEMCCON50979.2020.9456734
  6. [6] Hu, P., Zhou, X., Zhou, Z. (2020). On the modelling of maximum field distribution within reverberation chamber using the generalized extreme value theory. In IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). IEEE. https://doi.org/10.1109/NEMO49486.2020.9343522
  7. [7] Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer, 46-48. https://doi.org/10.1007/978-1-4471-3675-0
  8. [8] Gradoni, G., Arnaut, L.R. (2010). Generalized extreme-value distributions of power near a boundary inside electromagnetic reverberation chambers. IEEE Transactions on Electromagnetic Compatibility, 52 (3), 506-515. https://doi.org/10.1109/TEMC.2010.2043107
  9. [9] Nourshamsi, N., West, J.C., Hager, C.E., Bunting, C.F. (2019). Generalized extreme value distributions of fields in nested electromagnetic cavities. IEEE Transactions on Electromagnetic Compatibility, 61 (4), 1337-1344. https://doi.org/10.1109/TEMC.2019.2911927
  10. [10] Tait, G.B., Slocum, M.B., Richardson, R.E. (2009). On multipath propagation in electrically-large reflective spaces. IEEE Antennas and Wireless Propagation Letters, 8, 232-235. https://doi.org/10.1109/LAWP.2009.2014572
  11. [11] Tait, G.B., Richardson, R.E., Slocum, M.B., Hatfield, M.O., Rodriguez, M.J. (2011). Reverberant microwave propagation in coupled complex cavities. IEEE Transactions on Electromagnetic Compatibility, 53 (1), 229-232. https://doi.org/10.1109/TEMC.2010.2051442
  12. [12] Hill, D.A. (1994). Electronic mode stirring for reverberation chambers. IEEE Transactions on Electromagnetic Compatibility, 36 (4), 294-299. https://doi.org/10.1109/15.328858
  13. [13] Hu, P., Zhou, Z., Zhou, X., Li, J., Ji, J., Sheng, M. (2020). Generalized extreme value distribution based framework for shielding effectiveness evaluation of undermoded enclosures. In International Symposium on Electromagnetic Compatibility - EMC EUROPE. IEEE. https://doi.org/10.1109/EMCEUROPE48519.2020.9245665
  14. [14] Hu, P. (2021). Study on radiated susceptibility tests using mode-stirred reverberation chambers. Doctoral dissertation, Southeast University, Nanjing, China.
  15. [15] Zhou, Z., Hu, P., Zhou, X., Ji, J., Sheng, M., Li, P., Zhou, Q. (2020). Performance evaluation of oscillating wall stirrer in reverberation chamber using correlation matrix method and modes within Q-bandwidth. Transactions on Electromagnetic Compatibility, 62 (6), 2669-2678. https://doi.org/10.1109/TEMC.2020.2983981
  16. [16] Hosking, J.R., Wallis, J.R. (1997). Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge University Press. https://doi.org/10.1017/CBO9780511529443
  17. [17] Bekker, K.N. (2004). lmom.m. MATLAB Central File Exchange. https://www.mathworks.com/matlabcentral/fileexchange/5874-lmom-m
  18. [18] Andrieu, G., Ticaud, N., Lescoat, F., Trougnou, L. (2019). Fast and accurate assessment of the “Well Stirred Condition” of a reverberation chamber from S11 measurements. IEEE Transactions on Electromagnetic Compatibility, 61 (4), 974-982. https://doi.org/10.1109/TEMC.2018.2847727
  19. [19] Stephens, M.A. (1974). EDF statistics for goodness of fit and some comparisons. Journal of the American Statistical Association, 69 (394), 730-737. https://doi.org/10.1080/01621459.1974.10480196
  20. [20] Lemoine, C., Besnier, P., Drissi, M. (2007). Investigation of reverberation chamber measurements through high-power goodness-of-fit tests. IEEE Transactions on Electromagnetic Compatibility, 49 (4), 745-755. https://doi.org/10.1109/TEMC.2007.908290
  21. [21] Romero, S.F., Gutierrez, G., Gonzalez, I. (2014). Prediction of the maximum electric field level inside a metallic cavity using a quality factor estimation. Journal of Electromagnetic Waves and Applications, 28 (12), 1468-1477. https://doi.org/10.1080/09205071.2014.929049
  22. [22] Xu, Q., Chen, K., Shen, X., Li, W.H., Zhao, Y.J., Huang, Y. (2019). Comparison of the normalized maximum field strength using E-field probe and VNA methods in a reverberation chamber. IEEE Antennas and Wireless Propagation Letters, 18 (10), 2135-2139. https://doi.org/10.1109/LAWP.2019.2938833
Language: English
Page range: 225 - 230
Submitted on: Nov 11, 2021
|
Accepted on: Apr 28, 2022
|
Published on: Aug 5, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Dan Chen, Peng Hu, Zhongyuan Zhou, Xiang Zhou, Shouyang Zhai, Yan Chen, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.