References
- [1] Krolczyk, G., Gajek, M., Legutko, S. (2013). Predicting the tool life in the dry machining of duplex stainless steel. Eksploatcja i Niezawodnosc-Maintenance and Reliability, 15, 62-65.
- [2] Jun, S., Kochan, O. (2015). Common mode noise rejection in measuring channels. Instruments and Experimental Techniques, 58 (1), 86-89.10.1134/S0020441215010091
- [3] Glowacz, A. (2021). Thermographic fault diagnosis of ventilation in BLDC motors. Sensors, 21 (21), 7245. https://doi.org/10.3390/s2121724510.3390/s21217245858783334770550
- [4] Jun, S., Kochan, O., Kochan, R. (2016). Thermocouples with built-in self-testing. International Journal of Thermophysics, 37 (4), 1-9. https://doi.org/10.1007/s10765-016-2044-210.1007/s10765-016-2044-2
- [5] Wang, J., Przystupa, K., Maksymovych, V., Stakhiv, R., Kochan, O. (2020). Computer modelling of two-level digital frequency synthesizer with Poisson probability distribution of output pulses. Measurement Science Review, 20 (2), 65-72. https://doi.org/10.2478/msr-2020-000910.2478/msr-2020-0009
- [6] Greengard, S. (2015). The Internet of Things. MIT Press, ISBN 9780262527736.10.7551/mitpress/10277.001.0001
- [7] Jun, S., Przystupa, K., Beshley, M., Kochan, O., Beshley, H., Klymash, M., Pieniak, D.A. (2020). Cost-efficient software based router and traffic generator for simulation and testing of IP network. Electronics, 9 (1), 40. https://doi.org/10.3390/electronics901004010.3390/electronics9010040
- [8] Su, J., Kochan, O., Wang, C., Kochan, R. (2015). Theoretical and experimental research of error of method of thermocouple with controlled profile of temperature field. Measurement Science Review, 15 (6), 304-312. https://doi.org/10.1515/msr-2015-004110.1515/msr-2015-0041
- [9] Fraczyk, A., Jaworski, T., Urbanek, P., Kucharski, J. (2014). The design for a smart high frequency generator for induction heating of loads. Przegląd Elektrotechniczny [Electrical Review], 2, 20-23. DOI 10.12915/pe.2014.02.6.
- [10] Song, W., Beshley, M., Przystupa, K., Beshley, H., Kochan, O., Pryslupskyi, A., Su, J. (2020). A software deep packet inspection system for network traffic analysis and anomaly detection. Sensors, 20 (6), 1637. https://doi.org/10.3390/s2006163710.3390/s20061637714631832183399
- [11] Maksymovych, V., Shabatura, M., Harasymchuk, O., Karpinski, M., Jancarczyk, D., Sawicki, P. (2022). Development of additive Fibonacci generators with improved characteristics for cybersecurity needs. Applied Sciences, 12 (3), 1519. https://doi.org/10.3390/app1203151910.3390/app12031519
- [12] Mandrona, M., Maksymovych, V., Harasymchuk, O., Kostiv, Y. (2014). Generator of pseudorandom bit sequence with increased cryptographic security. Metallurgical and Mining Industry, 5, 25-29.
- [13] Maksymovych, V., Harasymchuk, O., Karpinski, M., Shabatura, M., Jancarczyk, D., Kajstura, K. (2021). A new approach to the development of additive Fibonacci generators based on prime numbers. Electronics, 10, 2912. https://doi.org/10.3390/electronics1023291210.3390/electronics10232912
- [14] Mandrona, M., Maksymovych, V. (2017). Comparative analysis of pseudorandom bit sequence generators. Journal of Automation and Information Sciences, 49 (3), 78-86. https://doi.org/10.1615/JAutomatInfScien.v49.i3.9010.1615/JAutomatInfScien.v49.i3.90
- [15] Maksymovych, V., Harasymchuk, O., Mandrona, M. (2017). Designing generators of Poisson pulse sequences based on the additive Fibonacci generators. Journal of Automation and Information Sciences, 49 (12), 1-12.10.1615/JAutomatInfScien.v49.i12.10
- [16] Maksymovych, V., Mandrona, M., Garasimchuk, O., Kostiv, Y. (2016). A study of the characteristics of the fibonacci modified additive generator with a delay. Journal of Automation and Information Sciences, 48 (11), 76-82.10.1615/JAutomatInfScien.v48.i11.70
- [17] Maksymovych, V., Harasymchuk, O., Opirskyy, I. (2018). The designing and research of generators of Poisson pulse sequences on base of Fibonacci modified additive generator. In Advances in Computer Science for Engineering and Education. Springer, 43-53. https://doi.org/10.1007/978-3-319-91008-6_510.1007/978-3-319-91008-6_5
- [18] Maksymovych, V., Mandrona, M., Harasymchuk, O. (2020). Dosimetric detector hardware simulation model based on modified additive Fibonacci generator. In Advances in Computer Science for Engineering and Education II. Springer, Vol. 938, 162-171. https://doi.org/10.1007/978-3-030-16621-2_1510.1007/978-3-030-16621-2_15
- [19] Maksymovych, V., Mandrona, M., Kostiv, Y., Harasymchuk, O. (2017). Investigating the statistical characteristics of Poisson pulse sequences generators constructed in different ways. Journal of Automation and Information Sciences, 49 (10), 11-19.10.1615/JAutomatInfScien.v49.i10.20
- [20] Agerblad, J., Andersen, M. (2013). Provably secure pseudo-random generators. Thesis, School of Computer Science and Communication, The Royal Institute of Technology, Stockhol, Sweden. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-134830.
- [21] Junod, P. (1999). Cryptographic secure pseudo-random bits generation: The Blum-Blum-Shub generator. http://crypto.junod.info/bbs.pdf
- [22] Shrestha, B. (2016). Multiprime Blum-Blum-Shub pseudorandom number generator. Thesis, Naval Postgraduate School, Monterey, CA. https://apps.dtic.mil/dtic/tr/fulltext/u2/1030047.pdf
- [23] Divyanjali, Ankur, Pareek, V. (2014). An overview of cryptographically secure pseudorandom number generators and BBS. In IJCA Proceedings of the International Conference on Advances in Computer Engineering and Applications ICACEA, 19-28.
- [24] Sodhi, G.K., Gaba, G.S. (2017). DNA and Blum Blum Shub random number generator based security key generation algorithm. International Journal of Security and its Applications, 11 (4), 1-10. http://dx.doi.org/10.14257/ijsia.2017.11.4.0110.14257/ijsia.2017.11.4.01
- [25] Blum, L., Blum, M., Shub, M. (1983). Comparison of two pseudo-random number generators. In Advances in Cryptology: Proceedings of Crypto 82. Springer, 61-78. http://dx.doi.org/10.1007/978-1-4757-0602-4_610.1007/978-1-4757-0602-4_6
- [26] Kapur, V., Paladi, S.T., Dubbakula, N. (2015). Two level image encryption using pseudo random number generators. International Journal of Computer Applications, 115 (12), 1-4. http://dx.doi.org/10.5120/20200-244610.5120/20200-2446
- [27] Aissa, B., Khaled, M., Lakhdar, G. (2014). Implementation of Blum Blum Shub generator for message encryption. In Proceedings of the International Conference on Control, Engineering and Information Technology (CEIT’14). IPCO, 118-123.
- [28] Lopez, P., Millan, E., van der Lubbe, J., Entrena, L. (2010). Cryptographically secure pseudorandom bit generator for RFID tags. In 2010 International Conference for Internet Technology and Secured Transactions. IEEE, 1-6.
- [29] Panda, A., Ray, K. (2018). Design and FPGA prototype of 1024-bit Blum-Blum-Shub PRBG architecture. In 2018 IEEE International Conference on Information Communication and Signal Processing (ICICSP). IEEE, 38-43, DOI 10.1109/ICICSP.2018.8549715.10.1109/ICICSP.2018.8549715
- [30] Rock, A. (2005). Pseudorandom number generators for cryptographic applications. Thesis, Universität Salzburg, Salzburg, Austria. https://cutt.ly/sPSuTVt
- [31] Hassan, N. (2017). Color images encryption using cipher system with different types of random number generator. International Journal of Innovative Research in Computer and Communication Engineering, 5 (5).
- [32] Omorog, C.D., Gerardo, B.D., Medina, R.P. (2018). Enhanced pseudorandom number generator based on Blum-Blum-Shub and elliptic curves. In 2018 IEEE Symposium on Computer Applications and Industrial Electronics (ISCAIE). IEEE, 269-274, DOI 10.1109/ISCAIE.2018.8405483.10.1109/ISCAIE.2018.8405483
- [33] Siahaan, A.P.U. (2016). Blum Blum Shub in generating key in RC4. The International Journal of Science & Technoledge, 4 (10), 1-5.
- [34] Malohlovets, A., Maksymovych, V. (2017). Research of methods for improving statistical characteristics for cryptographically strong BBS pseudorandom number and bit generators. In Proceedings of the 6th International Academic Technical Conference “Information and Information Systems Security”, Lviv, Ukraine, 73-74.
- [35] Gawande, K., Mundle, M. (1999). Various implementations of Blum Blum Shub pseudo-random sequence generator. http://koclab.cs.ucsb.edu/teaching/cren/project/2005past/gawande-mundle.pdf
- [36] Blum, L., Blum, M., Shub, M. (1986). A simple unpredictable pseudorandom number generator. SIAM Journal on Computing, 15 (2), 364-383. https://doi.org/10.1137/021502510.1137/0215025
- [37] Markov, I., Saeedi, M. (2012). Constant-optimized quantum circuits for modular multiplication and exponentiation. Quantum Information & Computation, 12 (5-6), 1-28.10.26421/QIC12.5-6-1
- [38] Sewak, K., Rajput, P., Panda, A.K. (2012). FPGA implementation of 16 bit BBS and LFSR PN sequence generator: A comparative study. In 2012 IEEE Students’ Conference on Electrical, Electronics and Computer Science. IEEE, 769-773. DOI 10.1109/SCEECS.2012. 6184758.10.1109/SCEECS.2012.6184758
- [39] Sidorenko, A., Schoenmakers, B. (2005). Concrete security of the Blum-Blum-Shub pseudorandom generator. In Cryptography and Coding: 10th IMA International Conference. Springer, Vol. 3796, 355-375. https://doi.org/10.1007/11586821_2410.1007/11586821_24
- [40] Malohlovets, A., Maksymovych, V. (2016). Research of the methods for improving performance for cryptographically strong BBS pseudorandom bit sequences generators. In Proceedings of the 6th International Youth Science Forum “Litteris et Artibus”, Lviv, Ukraine, 54-55.