Have a personal or library account? Click to login
Eddy Current Microsensor and RBF Neural Networks for Detection and Characterization of Small Surface Defects Cover

Eddy Current Microsensor and RBF Neural Networks for Detection and Characterization of Small Surface Defects

Open Access
|Apr 2022

References

  1. [1] Li, K., Li, L., Wang, P., Liu, J., Shi, Y., Zhen, Y., Dong, S. (2020). A fast and non-destructive method to evaluate yield strength of cold-rolled steel via incremental permeability. Journal of Magnetism and Magnetic Materials, 498, 166087. https://doi.org/10.1016/j.jmmm.2019.16608710.1016/j.jmmm.2019.166087
  2. [2] Velicheti, D., Nagy, P.B., Hassan, W. (2021). Residual stress and cold work assessment in shot-peened IN718 using a dual-mode electromagnetic technique. NDT & E International, 121, 102463. https://doi.org/10.1016/j.ndteint.2021.10246310.1016/j.ndteint.2021.102463
  3. [3] Obeidat, O., Yu, Q., Favro, L., Han, X. (2021). The effect of heating duration on the quantitative estimation of defect depth using sonic infrared imaging. Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, 4 (4), 044501. https://doi.org/10.1115/1.405035310.1115/1.4050353
  4. [4] Yu, Q., Obeidat, O., Han, X. (2018). Ultrasound wave excitation in thermal NDE for defect detection. NDT & E International, 100, 153-165. https://doi.org/10.1016/j.ndteint.2018.09.00910.1016/j.ndteint.2018.09.009
  5. [5] Lu, M., Peyton, A., Yin, W. (2017). Acceleration of frequency sweeping in eddy-current computation. IEEE Transactions on Magnetics, 53 (7). DOI: 10.1109/TMAG.2017.2688326.10.1109/TMAG.2017.2688326
  6. [6] Wendler, F., Munjal, R., Waqas, M., Laue, R., Härtel, S., Awiszus, B., Kanoun, O. (2021). Eddy current sensor system for tilting independent in-process measurement of magnetic anisotropy. Sensors, 21 (8), 2652. https://doi.org/10.3390/s2108265210.3390/s21082652806922333918959
  7. [7] Chen, X., Lei, Y. (2015). Electrical conductivity measurement of ferromagnetic metallic materials using pulsed eddy current method. NDT & E International, 75, 33. https://doi.org/10.1016/j.ndteint.2015.06.00510.1016/j.ndteint.2015.06.005
  8. [8] Li, K., Qiu, P., Wang, P., Lu, Z., Zhang, Z. (2021). Estimation method of yield strength of ferromagnetic materials based on pulsed eddy current testing. Journal of Magnetism and Magnetic Materials, 523, 167647. https://doi.org/10.1016/j.jmmm.2020.16764710.1016/j.jmmm.2020.167647
  9. [9] Lu, M., Meng, X., Chen, L., Huang, R., Yin, W., Peyton, A. (2020). Measurement of ferromagnetic slabs permeability based on a novel planar triple-coil sensor. IEEE Sensors Journal, 20 (6), 2904-2910. DOI: 10.1109/JSEN.2019.2957212.10.1109/JSEN.2019.2957212
  10. [10] Zhang, H., Ma, L., Xie, F. (2019). A method of steel ball surface quality inspection based on flexible arrayed eddy current sensor. Measurement, 144, 192-202. https://doi.org/10.1016/j.measurement.2019.05.05610.1016/j.measurement.2019.05.056
  11. [11] Machado, M.A., Antin, K.-N., Rosado, L.S., Vilaca, P., Santos, T.G. (2019). Contactless high-speed eddy current inspection of unidirectional carbon fiber reinforced polymer. Composites Part B: Engineering, 168, 226-235. https://doi.org/10.1016/j.compositesb.2018.12.02110.1016/j.compositesb.2018.12.021
  12. [12] Fava, J.O., Lanzani, L., Ruch, M.C. (2009). Multilayer planar rectangular coils for eddy current testing: Design considerations. NDT & E International, 42 (8), 713-720. https://doi.org/10.1016/j.ndteint.2009.06.00510.1016/j.ndteint.2009.06.005
  13. [13] Mirzaei, M., Ripka, P., Chirtsov, A., Grim, V. (2020). Eddy current speed sensor with magnetic shielding. Journal of Magnetism and Magnetic Materials, 502, 166568. https://doi.org/10.1016/j.jmmm.2020.16656810.1016/j.jmmm.2020.166568
  14. [14] Mizukami, K., bin Ibrahim, A.S., Ogi, K., Matvieieva, N., Kharabet, I., Schulz, M., Heuer, H. (2019). Enhancement of sensitivity to delamination in eddy current testing of carbon fiber composites by varying probe geometry. Composite Structures, 226, 111227. https://doi.org/10.1016/j.compstruct.2019.11122710.1016/j.compstruct.2019.111227
  15. [15] Ye, C., Wang, Y., Wang, M., Udpa, L., Udpa, S.S. (2020). Frequency domain analysis of magnetic field images obtained using TMR array sensors for subsurface defect detection and quantification. NDT & E International, 116, 102284. https://doi.org/10.1016/j.ndteint.2020.10228410.1016/j.ndteint.2020.102284
  16. [16] Kuang, Y., Chew, Z.J., Ruan, T., Lane, T., Allen, B., Nayar, B., Zhu, M. (2021). Magnetic field energy harvesting from the traction return current in rail tracks. Applied Energy, 292, 116911. https://doi.org/10.1016/j.apenergy.2021.11691110.1016/j.apenergy.2021.116911
  17. [17] She, S., Chen, Y., He, Y., Zhou, Z., Zou, X. (2021). Optimal design of remote field eddy current testing probe for ferromagnetic pipeline inspection. Measurement, 168, 108306. https://doi.org/10.1016/j.measurement.2020.10830610.1016/j.measurement.2020.108306
  18. [18] Mizukami, K., Watanabe, Y. (2018). A simple inverse analysis method for eddy current-based measurement of through-thickness conductivity of carbon fiber composites. Polymer Testing, 69, 320-324. https://doi.org/10.1016/j.polymertesting.2018.05.04310.1016/j.polymertesting.2018.05.043
  19. [19] Velicheti, D., Nagy, P.B., Hassan, W. (2019). Inversion procedure for dual-mode electromagnetic nondestructive characterization of shot-peened IN718. NDT & E International, 101, 17-28. https://doi.org/10.1016/j.ndteint.2018.09.01310.1016/j.ndteint.2018.09.013
  20. [20] Meshkin, R., Maghsoodi, M., Saberkari, A., Niaboli-Guilani, M. (2013). High efficient CMOS class-E power amplifier with a new output power control scheme. Journal of Electrical and Electronics Engineering, 6 (1), 77-82.
  21. [21] Madenci, E., Guven, I. (2015). The Finite Element Method and Applications in Engineering Using ANSYS®. Second Edition. Springer, ISBN 978-1-4899-7549-2.10.1007/978-1-4899-7550-8
  22. [22] Sadowski, N., Lefevre, Y., Lajoie-Mazenc, M., Cros, J. (1992). Finite element torque calculation in electrical machines while considering the movement. IEEE Transactions on Magnetics, 28 (2), 1410-1413. DOI: 10.1109/20.123957.10.1109/20.123957
  23. [23] Ren, Z. (1996). Auto-gauging of vector potential by iterative solver-numerical evidence. In 3rd International Workshop on Electric and Magnetic Fields. AIM, 119-124.
  24. [24] Ren, Z., Razek, A. (2000). Comparison of some 3D eddy current formulations in dual systems. IEEE Transactions on Magnetics, 36 (4), 751-755. DOI: 10.1109/20.877556.10.1109/20.877556
  25. [25] Ren, Z., Razek, A. (1996). Computation of 3-D electromagnetic field using differential forms based elements and dual formulations. International Journal of Numerical Modelling, 9 (1-2), 81-98.10.1002/(SICI)1099-1204(199601)9:1/2<81::AID-JNM229>3.0.CO;2-J
  26. [26] Le Bihan, Y., Pávó, J., Marchand, C. (2008). Characterization of small cracks in eddy current testing. The European Physical Journal Applied Physics, 43 (2), 231-237. https://doi.org/10.1051/epjap:200811210.1051/epjap:2008112
  27. [27] Wang, Z., Yang, B., Kang, Y., Yang, Y. (2016). Development of a prediction model based on RBF neural network for sheet metal fixture locating layout design and optimization. Computational Intelligence and Neuroscience, 2016, 7620438. https://doi.org/10.1155/2016/762043810.1155/2016/7620438
  28. [28] Demuth, H., Beale, M. (2001). Neural network toolbox: For use with MATLAB. User’s guide, Version 4. MathWorks, Inc.
Language: English
Page range: 112 - 121
Submitted on: Sep 22, 2021
Accepted on: Feb 28, 2022
Published on: Apr 22, 2022
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Chifaa Aber, Azzedine Hamid, Mokhtar Elchikh, Tierry Lebey, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.