Have a personal or library account? Click to login

Design of Distributed Fusion Predictor and Filter without Feedback for Nonlinear System with Correlated Noises and Random Parameter Matrices

Open Access
|Jan 2022

References

  1. [1] Scheel, A., Knill, C, Reuter, S., Dietmayer, K. (2016). Multi-sensor multi-object tracking of vehicles using high-resolution radars. In IEEE Intelligent Vehicles Symposium (IV). IEEE, 558-565.10.1109/IVS.2016.7535442
  2. [2] Jing, Z., Pan, H., Li, Y., Dong, P. (2018). Target tracking and multi-sensor fusion with adaptive cubature information filter. In Non-Cooperative Target Tracking, Fusion and Control. Springer, 41-70.10.1007/978-3-319-90716-1_4
  3. [3] Tao, X., Shi, Z., Li, X. (2018). A new intelliSense strategy based on artificial immune system for multirobot cooperation. Journal of Robotics & Mechatronics, 30 (1), 128-137.10.20965/jrm.2018.p0128
  4. [4] Zhang, Y.Y., Huang, Y., Liu, Y., Liu, C.X., Liu, P., Zhang, Y. (2020). Human grasp feature learning and object recognition based on multi-sensor information fusion. Robot, 42 (3), 267-277.
  5. [5] Zhang, Q.Y., Zhang, T., Zhao, Z.Y. (2019). Human motion modes recognition based on multi-sensors. Transducer and Microsystem Technologies, 38 (2), 73-76.
  6. [6] He, F., Shi, Y.F., Wang, F., Zhao, H.W., Qin, H.B. (2018). Research on GMAW welding process pattern recognition based on multi-sensor and support vector machine. Technology Innovation and Application, 34, 1-7.
  7. [7] Carlson, N.A., Neily, C.M. (1987). Distributed Kalman filter architectures. Final report, AFWAL-TR-87-118 1, Avionics Laboratory, WPAFB, Ohio, US.
  8. [8] Carlson, N.A. (1990). Federated square root filter for decentralized parallel processes. IEEE Transactions on Aerospace and Electronic Systems, 26 (3), 517-525.10.1109/7.106130
  9. [9] Carlson, N.A. (1988). Federated filter for fault-tolerant integrated navigation systems. In IEEE Symposium on Position Location and Navigation (PLANS). IEEE, 110-119.10.1109/PLANS.1988.195473
  10. [10] Deng, Z.L. (2012). Information Fusion Estimation Theory and Its Application. Beijing, China: Science Press.
  11. [11] Deng, Z.L., Gao, Y., Mao, L., Li, Y., Hao, G. (2005). New approach to information fusion steady-state Kalman filtering. Automatica, 41 (10), 1695-1707.10.1016/j.automatica.2005.04.020
  12. [12] Sun, S.L. (2004). Multi-sensor information fusion white noise filter weighted by scalars based on Kalman predictor. Automatica, 40 (8), 1447-1453.10.1016/j.automatica.2004.03.012
  13. [13] Julier, S.J., Uhlmann, J.K. (1997). A non-divergent estimation algorithm in the presence of unknown correlations. In American Control Conference (ACC). IEEE, Vol. 4, 2369-2373.10.1109/ACC.1997.609105
  14. [14] Deng, Z., Peng, Z., Qi, W., Liu, J., Yuan, G. (2012). Sequential covariance intersection fusion Kalman filter. Information Sciences, 189, 293-309.10.1016/j.ins.2011.11.038
  15. [15] Yuan, Y.X., Sun, W. (1997). Optimization Theory and Methods. Beijing, China: Science Press.
  16. [16] Cong, J., Li, Y., Qi, G., Sheng, A. (2016). An order insensitive sequential fast covariance intersection fusion algorithm. In Information Sciences, 367, 28-40.10.1016/j.ins.2016.06.001
  17. [17] Lin, H., Sun, S. (2019). Globally optimal sequential and distributed fusion state estimation for multi-sensor systems with cross-correlated noises. Automatica, 101, 128-137.10.1016/j.automatica.2018.11.043
  18. [18] Sun, S. (2020). Distributed optimal linear fusion predictors and filters for systems with random parameter matrices and correlated noises. IEEE Transactions on Signal Processing, 68, 1064-1074.10.1109/TSP.2020.2967180
Language: English
Page range: 17 - 31
Submitted on: Sep 13, 2021
Accepted on: Nov 30, 2021
Published on: Jan 21, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2022 Man-lu Liu, Rui Lin, Jian-wen Huo, Li-guo Tan, Qing Ling, Eugene Yuryevich Zybin, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.