Have a personal or library account? Click to login

Problem of Total Harmonic Distortion Measurement Performed by Smart Energy Meters

Open Access
|Jan 2022

References

  1. [1] IEC (2015). IEC Std. 50160: Voltage characteristics of electricity supplied by public distribution networks.
  2. [2] IEC (2021)a. IEV number 161-08-18, short-term flicker indicator. http://www.electropedia.org/.
  3. [3] IEC (2021)b. IEV number 161-08-19, long-term flicker indicator. http://www.electropedia.org/.
  4. [4] IEC (2021)c. IEV number 551-20-13, total harmonic ratio / total harmonic distortion. http://www.electropedia.org/.
  5. [5] CEER (2016). 6th CEER Benchmarking Report on all the Quality of Electricity and Gas Supply 2016.
  6. [6] IEC (2015). IEC Std. 61000-4-30: Testing and measurement techniques – Power quality measurement methods.
  7. [7] Aiello, M., Cataliotti, A., Favuzza, S., Graditi, G. (2006). Theoretical and experimental comparison of total harmonic distortion factors for the evaluation of harmonic and interharmonic pollution of grid-connected photovoltaic systems. IEEE Transactions on Power Delivery 21(3), 1390–1397.10.1109/TPWRD.2005.860231
  8. [8] Ruderman, A. (2015). About voltage total harmonic distortion for single- and three-phase multilevel inverters. IEEE Transactions on Industrial Electronics 62(3), 1548–1551.10.1109/TIE.2014.2341557
  9. [9] Collin, A., Djokic, S., Drapela, J., Langella, R., Testa, A. (2019). Proposal of a desynchronized processing technique for assessing high-frequency distortion in power systems. IEEE Transactions on Instrumentation and Measurement 68(10), 3883–3891.10.1109/TIM.2019.2907755
  10. [10] IEC (2021)a. IEV number 614-01-28, Flicker. http://www.electropedia.org/.
  11. [11] IEC (2021)b. IEV number 161-08-05, voltage fluctuation. http://www.electropedia.org/.
  12. [12] Antic, B., Mitrovic, Z., Vujicic, V. (2012). A method for harmonic measurement of real power grid signals with frequency drift using instruments with internally generated reference frequency. Measurement Science Review 12(6), 277–285.10.2478/v10048-012-0038-1
  13. [13] Bartman, J., Kwiatkowski, B. (2018). The influence of measurement methodology on the accuracy of electrical waveform distortion analysis. Measurement Science Review 18(2), 72–78.10.1515/msr-2018-0011
  14. [14] Espel, P., Poletaeff, A., Ndilimabaka, H. (2010). Traceability of voltage measurements for non-sinusoidal waveforms. Measurement Science Review 10(6), 200–204.10.2478/v10048-010-0034-2
  15. [15] ] Szolik, I., Kovac, K., Smiesko, V. (2003). Influence of digital signal processing on precision of power quality parameters measurement. Measurement Science Review 3(1), 35–38.
  16. [16] IEC (2011). IEC Std. 61000-4-7: Testing and measurement techniques – general guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto.
  17. [17] Wiczynski, G. (2020). Determining location of voltage fluctuation source in radial power grid. Electric Power Systems Research 180, art. no. 106069.10.1016/j.epsr.2019.106069
  18. [18] Kuwałek, P. (2021). Estimation of parameters associated with individual sources of voltage fluctuations. IEEE Transactions on Power Delivery 36(1), 351–361.10.1109/TPWRD.2020.2976707
  19. [19] Wei, S., Vanko, B., Kochan, O., Kochan, R., Su, J. (2019). Improving monitoring of pulse distortions of voltage in power networks. Tekhnichna elektrodynamika 4, 65–69.10.15407/techned2019.04.065
  20. [20] Otomanski, P., Wiczynski, G. (2011). The usage of voltage and current fluctuation for localization of disturbing loads supplied from power grid. Przeglad Elektrotechniczny 87(1), 107–111.
  21. [21] Lisowski, M., Masnicki, R., Mindykowski, J. (2019). Plc-enabled low voltage distribution network topology monitoring. IEEE Transactions on Smart Grid 10(6), 6436–6448.10.1109/TSG.2019.2904681
  22. [22] Chmielowiec, K., Wiczynski, G., Rodziewicz, T., Firlit, A., Dutka, M., Piatek, K. (2020). Location of power quality disturbances sources using aggregated data from energy meters. In: 2020 12th International Conference and Exhibition on Electrical Power Quality and Utilisation- (EPQU). pp. 1–5.10.1109/EPQU50182.2020.9220293
  23. [23] Legal Act (2020). Act amending the Act - Energy Law and certain other Acts, Minister of Climate (formerly Minister of Energy).
  24. [24] IEEE (2010). IEEE Std. 1459–2010 – IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions.
  25. [25] Dyer, S., Dyer, J. (2011). Distortion: Total harmonic distortion in an asymmetrically clipped sinewave. IEEE Instrumentation Measurement Magazine 14(2), 48–51.10.1109/MIM.2011.5735256
  26. [26] Zhu, K., Sun, P., Zhou, L., Du, X., Luo, Q. (2020). Frequency-division virtual impedance shaping control method for grid-connected inverters in a weak and distorted grid. IEEE Transactions on Power Electronics 35(8), 8116–8129.10.1109/TPEL.2019.2963345
  27. [27] Balasubramaniam, P., Prabha, S. (2015). Power quality issues, solutions and standards: A technology review. Journal of Applied Science and Engineering 18(4), 371–380.
  28. [28] Wu, C., Gao, Y., Li, C., Cao, Y., Iravani, R. (2020). Analytic mode decomposition and windowed three-point interpolated chirp-z transform for voltage flicker components detection. Electric Power Systems Research 186, art. no. 106382.10.1016/j.epsr.2020.106382
  29. [29] KuwaĹ‚ek, P. (2020). Am modulation signal estimation allowing further research on sources of voltage fluctuations. IEEE Transactions on Industrial Electronics 67(8), 6937–6945.10.1109/TIE.2019.2935978
  30. [30] Wiczynski, G. (2017). Estimation of pst indicator values on the basis of voltage fluctuation indices. IEEE Transactions on Instrumentation and Measurement 66(8), 2046–2055.10.1109/TIM.2017.2687538
  31. [31] Espel, P. (2010). Comparison of three accurate methods for flicker measurements. Metrologia 47(3), 287–294.10.1088/0026-1394/47/3/020
  32. [32] Valtierra-Rodriguez, M., Romero-Troncoso, R., Osornio-Rios, R., Garcia-Perez, A. (2014). Detection and classification of single and combined power quality disturbances using neural networks. IEEE Transactions on Industrial Electronics 61, 2473–2482.10.1109/TIE.2013.2272276
  33. [33] Liu, H., Hussain, F., Shen, Y., Arif, S., Nazir, A., Abubakar, M. (2018). Complex power quality disturbances classification via curvelet transform and deep learning. Electric Power Systems Research 163, 1–9.10.1016/j.epsr.2018.05.018
  34. [34] Mahela, O., Shaik, A., Khan, B., Mahla, R., Alhelou, H. (2020). Recognition of complex power quality disturbances using s-transform based ruled decision tree. IEEE Access 8, 173530–173547.10.1109/ACCESS.2020.3025190
  35. [35] Otomanski, P., Wiczynski, G. (2015). The application of programmable ac source to generation of higher harmonics in examination of power quality. Przeglad Elektrotechniczny 91(8), 38–41.
  36. [36] Kuwalek, P., Otomanski, P., Wandachowicz, K. (2020). Influence of the phenomenon of spectrum leakage on the evaluation process of metrological properties of power quality analyser. Energies 13(20), art. no. 5338.10.3390/en13205338
  37. [37] Kuwalek, P., Otomanski, P. (2019). The effect of the phenomenon of “spectrum leakage” on the measurement of power quality parameters. In: 2019 12th International Conference on Measurement. pp. 70–73.10.23919/MEASUREMENT47340.2019.8779957
  38. [38] Testa, A., Gallo, D., Langella, R. (2004). On the processing of harmonics and interharmonics: using hanning window in standard framework. IEEE Transactions on Power Delivery 19(1), 28–34.10.1109/TPWRD.2003.820437
  39. [39] Legal Act (2007). Decree of Ministry of Economy on detailed conditions of power system operation.
  40. [40] Kuwalek, P. (2021). Influence of voltage variation on the measurement of total harmonic distortion (THD) by ami smart electricity meters. In: 2021 13th International Conference on Measurement. pp. 159–162.10.23919/Measurement52780.2021.9446802
  41. [41] AWG (2012). Agilent 33500 series waveform generator: Operating and service uide.
  42. [42] PA (2004). Programmable ac source 61501/61502/61503/61504 user manual.
  43. [43] PQA (2011). Power quality analyser pq-box 100: Operating manual.
  44. [44] Witkovsky, V., Wimmer, G., Durisova, Z., Duris, S., Palencar, R. (2017). Brief overview of methods for measurement uncertainty analysis: GUM uncertainty framework, monte carlo method, characteristic function approach. In: 2017 11th International Conference on Measurement. pp. 35–38.10.23919/MEASUREMENT.2017.7983530
  45. [45] Dziarski, K., Hulewicz, A., Dombek, G. (2021). Lack of thermogram sharpness as component of thermographic temperature measurement uncertainty budget. Sensors 21(12), art. no. 4013.10.3390/s21124013823045734200789
  46. [46] Majchrzak, J., Wiczyński, G. (2012). Basic characteristics of IEC flickermeter processing. Modelling and Simulation in Engineering 2012, art. no. 362849.10.1155/2012/362849
Language: English
Page range: 1 - 10
Submitted on: Jul 28, 2021
Accepted on: Oct 20, 2021
Published on: Jan 21, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2022 Piotr Kuwałek, Grzegorz Wiczyński, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.