Have a personal or library account? Click to login
A Novel Three-stage Feature Fusion Methodology and its Application in Degradation State Identification for Hydraulic Pumps Cover

A Novel Three-stage Feature Fusion Methodology and its Application in Degradation State Identification for Hydraulic Pumps

By: Mochao Pei,  Hongru Li and  He Yu  
Open Access
|Sep 2021

Abstract

The performance of feature is essential to the degradation state identification for hydraulic pumps. The initial feature set extracted from the vibration signal of the hydraulic pump is often high-dimensional and contains redundant information, which undermines the effectiveness of the feature set. The novel three-stage feature fusion scheme proposed in this paper aims to enhance the performance of the original features extracted from the vibration signal. First, sparse local Fisher discriminant analysis (SLFDA) performs intra-set fusion within the two original feature sets, respectively. SLFDA has a good effect on samples with intra-class multimodality, and the feature set fused by it has obvious multivariate normal distribution characteristics, which is conducive to the next fusion. Second, our modified intra-class correlation analysis (MICA) is used to fuse two feature sets in the second stage. MICA is a CCA (Canonical correlation analysis) -based method. A new class matrix is used to modify the covariance matrix between two feature sets, which allows MICA to conveniently inherit the discriminating structure while fusing features. Finally, we propose a feature selection algorithm based on kernel local Fisher discriminant analysis (KLFDA) and kernel canonical correlation analysis (KCCA) to select the desired features. This algorithm based on Max-Relevance and Min-Redundancy (mRMR) framework solves the problem that CCA cannot properly evaluate the correlation between features and the class variable, as well as accurately evaluates the correlation among features. Based on the experimental data, the proposed method is compared with several popular methods, and the feature fusion methods used in some previous studies related to the fault diagnosis of rotating machinery are compared with it as well. The results show that the fusion effectiveness of our method is better than other methods, which obtains higher recognition accuracy.

Language: English
Page range: 123 - 135
Submitted on: Jun 30, 2021
Accepted on: Aug 31, 2021
Published on: Sep 17, 2021
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2021 Mochao Pei, Hongru Li, He Yu, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.