Have a personal or library account? Click to login
Sensitivity Analysis of the Simply Noise-matched Receiving Coil for NMR Experiments Cover

Sensitivity Analysis of the Simply Noise-matched Receiving Coil for NMR Experiments

By: Peter Andris and  Ivan Frollo  
Open Access
|Oct 2020

References

  1. [1] Žalud, V., Kulešov, V.N. (1980). Polovodičové obvody s malým šumem (Semiconductor Circuits with Low Noise). Prague, Czech Republic: SNTL. (in Czech)
  2. [2] Schiek, B., Siweris, H.J. (1990). Rauschen in Hochfrequenz-schaltungen (Noises in RF Circuits). Heidelberg, Germany: Hüthig. (in German)
  3. [3] Andris, P., Emery, E.F., Frollo, I. (2019). Analysis of NMR spectrometer receiver noise figure. Mathematical Problems in Engineering, 2019, 1083706. https://doi.org/10.1155/2019/1083706.10.1155/2019/1083706
  4. [4] Andris, P., Dermek, T., Frollo, I. (2019). Noise matching of the NMR scanner receiver. In MEASUREMENT 2019: 12th International Conference on Measurement. Bratislava, Slovakia: Institute of Measurement Science, Slovak Academy of Sciences, 274-277. https://doi.org/10.23919/MEASUREMENT47340.2019.8779891.10.23919/MEASUREMENT47340.2019.8779891
  5. [5] Hoult, D.I., Richards, R.E. (1976). The signal-to-noise ratio of the nuclear magnetic resonance experiment. Journal of Magnetic Resonance 24 (1), 71-85. https://doi.org/10.1016/0022-2364(76)90233-X.10.1016/0022-2364(76)90233-X
  6. [6] Hoult, D.I., Lauterbur, P.C. (1979). The sensitivity of the zeugmatographic experiment involving human samples. Journal of Magnetic Resonance, 34 (2), 425-433. https://doi.org/10.1016/0022-2364(79)90019-2.10.1016/0022-2364(79)90019-2
  7. [7] Raad, A., Darrasse, L. (1992). Optimization of NMR bandwidth by inductive coupling. Magnetic Resonance Imaging, 10 (1), 55-65. https://doi.org/10.1016/0730-725x(92)90373-8.10.1016/0730-725X(92)90373-8
  8. [8] Décorps, M., Blondet, P., Reutenauer, H., Albrand, J.P., Remy, C. (1985). An inductively coupled, series-tuned NMR probe. Journal of Magnetic Resonance, 65 (1), 100-109. https://doi.org/10.1016/0022-2364(85)90378-6.10.1016/0022-2364(85)90378-6
  9. [9] Andris, P. (2001) Matching and tuning RF coils for NMR tomograph. Measurement Science Review, 1 (1), 115-118.
  10. [10] Andris, P., Frollo, I. (2003). Matching of RF coils for NMR measurements using inductors. Measurement Science Review, 3 (3), 57-60.
  11. [11] Vergara Gomez, T.S., Dubois, M., Glybovski, S., Larrat, B., de Rosny, J., Rockstuhl, C., Bernard, M., Abdeddaim, R., Enoch, S., Kober, F. (2019). Wireless coils based on resonant and nonresonant coupled-wire structure for small animal multinuclear imaging. NMR in Biomedicine, 32 (5), e4079. https://doi.org/10.1002/nbm.4079.10.1002/nbm.4079659436030773725
  12. [12] Qian, Ch., Duan, Q., Dodd, S., Koretsky, A., Murphy-Boesch, J. (2016). Sensitivity enhancement of an inductively coupled local detector using a HEMT-based current amplifier. Magnetic Resonance in Medicine, 75 (6), 2573-2578. https://doi.org/10.1002/mrm.25850.10.1002/mrm.25850472059126192998
  13. [13] Weis, J., Ericsson, A., Hemmingsson, A. (1999). Chemical shift artifact-free microscopy: Spectroscopic microimaging of the human skin. Magnetic Resonance in Medicine, 41 (5), 904-908. https://doi.org/10.1002/(SICI)1522-2594(199905)41:5%3C904::AID-MRM8%3E3.0.CO;2-4.10.1002/(SICI)1522-2594(199905)41:5<904::AID-MRM8>3.0.CO;2-4
  14. [14] Marcon, P., Bartusek, K., Dokoupil, Z., Gescheidtova, E. (2012). Diffusion MRI: Mitigation of magnetic field inhomogeneities. Measurement Science Review, 12 (5), 205-212. https://doi.org/10.2478/v10048-012-0031-8.10.2478/v10048-012-0031-8
  15. [15] Bartusek, K., Dokoupil, Z., Gescheidtova, E. (2007). Mapping of magnetic field around small coil using the magnetic resonance method. Measurement Science and Technology, 18 (7), 2223-2230. https://doi.org/10.1088/0957-0233/18/7/056.10.1088/0957-0233/18/7/056
  16. [16] Nespor, D., Bartusek, K., Dokoupil, Z. (2014). Comparing saddle, slotted-tube and parallel-plate coils for Magnetic Resonance Imaging. Measurement Science Review, 14 (3), 171-176. https://doi.org/10.2478/msr-2014-0023.10.2478/msr-2014-0023
  17. [17] Latta, P., Gruwel, M.L., Volotovskyy, V., Weber, M.H., Tomanek, B. (2007). Simple phase method for measurement of magnetic field gradient waveforms. Magnetic Resonance Imaging, 25 (9), 1272-1276. https://doi.org/10.1016/j.mri.2007.02.002.10.1016/j.mri.2007.02.00217418520
  18. [18] Latta, P., Gruwel, M.L., Volotovskyy, V., Weber, M.H., Tomanek, B. (2008). Single-point imaging with a variable phase encoding interval. Magnetic Resonance Imaging, 26 (1), 109-116. https://doi.org/10.1016/j.mri.2007.05.004.10.1016/j.mri.2007.05.00417614232
  19. [19] Gupta, M., Safvan, C.P., Singh, K., Lobiyal, D.K. (2018). Modeling and simulation of on-chip probe for portable NMR applications. In Progress in Electromagnetics Research Symposium (PIERS-Toyama). IEEE, 1918-1924. https://doi.org/10.23919/PIERS.2018.8597770.10.23919/PIERS.2018.8597770
  20. [20] Wimmer, G., Witkovský, V., Duby, T. (2000). Proper rounding of the measurement results under normality assumptions. Measurement Science and Technology, 11 (12), 1659-1665. https://doi.org/10.1088/0957-0233/11/12/302.10.1088/0957-0233/11/12/302
Language: English
Page range: 236 - 240
Submitted on: May 20, 2020
|
Accepted on: Oct 5, 2020
|
Published on: Oct 29, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2020 Peter Andris, Ivan Frollo, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.