Have a personal or library account? Click to login
Using a Gauge Block for Derivation of Parameters of Four Laser Triangulation Sensors in a Local Coordinate System Cover

Using a Gauge Block for Derivation of Parameters of Four Laser Triangulation Sensors in a Local Coordinate System

Open Access
|Oct 2020

References

  1. [1] Weckenmann, A., Kraemer, P., Hoffmann, J. (2007). Manufacturing metrology – state of the art and prospects. In: 9thInternational Symposium on Measurement and Quality Control (9thISMQC). IMEKO.
  2. [2] MTI Instruments, Inc. (2020) Laser triangulation sensors. https://www.mtiinstruments.com/technology-principles/laser-triangulation-sensors/.
  3. [3] Micro-Epsilon Messtechnik. (2020). Micro-epsilon sensors. https://www.micro-epsilon.com/.
  4. [4] Berkovic, G., Shafir, E. (2012). Optical methods for distance and displacement measurements. Advances in Optics and Photonics, 4(4), 441–471. https://doi.org/10.1364/AOP.4.000441.10.1364/AOP.4.000441
  5. [5] MTI Instruments Inc. (2019). An introduction to laser triangulation sensors. https://www.azosensors.com/article.aspx?ArticleID=523.
  6. [6] Zhang, Z., Feng, Q., Gao, Z., Kuang, C., Fei, C., Li, Z., Ding, J. (2008). A new laser displacement sensor based on triangulation for gauge real-time measurement. Optics & Laser Technology, 40, 252–255. https://doi.org/10.1016/j.optlastec.2007.04.009.10.1016/j.optlastec.2007.04.009
  7. [7] Soave, E., D’Elia, G., Mucchi, E. (2020). A laser triangulation sensor for vibrational structural analysis and diagnostics. Measurement and Control, 53(1-2), 73–82. https://doi.org/10.1177/0020294019877484.10.1177/0020294019877484
  8. [8] Li, X.-Q., Wang, Z., Fu, L.-H. (2016). A laser-based measuring system for online quality control of car engine block. Sensors, 16(11), 1877. https://doi.org/10.3390/s16111877.10.3390/s16111877513453627834839
  9. [9] Wikimedia Foundation. (2020). Gauge block. https://en.wikipedia.org/wiki/Gauge_block.
  10. [10] Storn, R. M., Price, K. V. (1995). Differential evolution – A simple and efficient adaptive scheme for global optimization over continuous spaces. International Computer Science Institute (ICSI), TR-95-012.
  11. [11] Buša, J., Dovica, M., Kačmár, L. (2018). Derivation of a coordinate system of three laser triangulation sensors in a plane. In Numerical Methods and Applications: 9th International Conference. Springer, LNCS 11189, 64–71. https://doi.org/10.1007/978-3-030-10692-8_7.10.1007/978-3-030-10692-8_7
  12. [12] Price, K. V., Storn, R. M., Lampinen, J. A. (2005). Differential Evolution. A Practical Approach to Global Optimization. Springer, https://doi.org/10.1007/3-540-31306-0.10.1007/3-540-31306-0
  13. [13] Das, S., Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15(1), 4–31. https://doi.org/10.1109/TEVC.2010.2059031.10.1109/TEVC.2010.2059031
  14. [14] Zhabitskaya, E., Zhabitsky, M. (2013). Asynchronous differential evolution with adaptive correlation matrix. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation (GECCO’13). Association for Computing Machinery (ACM), 455–462. https://doi.org/10.1145/2463372.2463428.10.1145/2463372.2463428
  15. [15] Zhabitskaya, E., Zhabitsky, M. (2012). Asyn-chronous differential evolution. In Mathematical Modeling and Computational Science: International Conference (MMCP 2011). Springer, LNCS 7125, 328–331. https://doi.org/10.1007/978-3-642-28212-6_41.10.1007/978-3-642-28212-6_41
  16. [16] Zhabitsky, M. (2016). Comparison of the asynchronous differential evolution and jade minimization algorithms. EPJ Web of Conferences, 108, 02048. https://doi.org/10.1051/epjconf/201610802048.10.1051/epjconf/201610802048
  17. [17] Zhabitskaya, E., Zhabitsky, M. (2013). Asynchronous differential evolution with restart. In: Numerical Analysis and Its Applications: 5th International Conference (NAA 2012). Springer, LNCS 8236, 555–561. https://doi.org/10.1007/978-3-642-41515-9_64.10.1007/978-3-642-41515-9_64
  18. [18] Eaton, J.W. (2020). GNU Octave. https://www.gnu.org/software/octave/.
  19. [19] The MathWorks, Inc. (2020). MATLAB. https://ch.mathworks.com/products/matlab.html.
Language: English
Page range: 210 - 217
Submitted on: Jul 6, 2020
|
Accepted on: Sep 30, 2020
|
Published on: Oct 29, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2020 Ján Buša, Miroslav Dovica, Mikhail Zhabitsky, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.