Have a personal or library account? Click to login
Automatic Strain Gauge Balance Design Optimization Approach and Implementation Based on Integration of Software Cover

Automatic Strain Gauge Balance Design Optimization Approach and Implementation Based on Integration of Software

Open Access
|Feb 2020

References

  1. [1] Tropea, C., Yarin, A.L., Foss, J.F. (2007). Springer Handbook of Experimental Fluid Mechanics. Springer, doi: 10.1007/978-3-540-30299-5.10.1007/978-3-540-30299-5
  2. [2] Chanetz, B. (2017). A century of wind tunnels since Eiffel. Comptes Rendus Mécanique, 345 (8), 581-594. doi:10.1016/j.crme.2017.05.012.10.1016/j.crme.2017.05.012
  3. [3] Gebbink, R., Wang, G., Zhong, M. (2018). High-speed wind tunnel test of the CAE aerodynamic validation model. Chinese Journal of Aeronautics, 31, 439-447. doi: 10.1016/j.cja.2018.01.010.10.1016/j.cja.2018.01.010
  4. [4] Giappino, S., Melzi, S., Tomasini, G. (2018). High-speed freight trains for intermodal transportation: Wind tunnel study on the aerodynamic coefficients of container wagons. Journal of Wind Engineering and Industrial Aerodynamics, 175, 111-119. doi: 10.1016/j.jweia.2018.01.047.10.1016/j.jweia.2018.01.047
  5. [5] Sheng, R., Perret, L., Calmet, I., Demouge, F., Guilhot, J. (2018). Wind tunnel study of wind effects on a high-rise building at a scale of 1:300. Journal of Wind Engineering and Industrial Aerodynamics, 174, 391-403. doi:10.1016/j.jweia.2018.01.017.10.1016/j.jweia.2018.01.017
  6. [6] Gorlin, S.M., Slezinger, I.I. (1964). Wind Tunnels and Their Instrumentation. IPST, 599.
  7. [7] Damljanović, D., Isaković, J., Rašuo, B. (2013). T-38 wind-tunnel data quality assurance based on testing of a standard model. Journal of Aircraft, 50 (4), 1141-1149. doi: 10.2514/1.c032081.10.2514/1.C032081
  8. [8] Vidanović, N.D., Rašuo, B.P., Damljanović, D.B., Vuković, D.S., Ćurčić, D.S. (2014). Validation of the CFD code used for determination of aerodynamic characteristics of nonstandard AGARD-B calibration model. Thermal Science, 2014, 18 (4), 1223-1233. doi:10.2298/TSCI130409104V.10.2298/TSCI130409104V
  9. [9] Ocokoljić, G., Damljanović, D., Vuković, Đ., Rašuo, B.P. (2018). Contemporary frame of measurement and assessment of wind-tunnel flow quality in a low-speed facility. FME Transactions, 46 (4), 429-442. doi: 10.5937/fmet1804429O.10.5937/fmet1804429O
  10. [10] Ewald, B.F.R. (2000). Multi-component force balances for conventional and cryogenic wind tunnels. Measurement Science and Technology, 11 (6). doi: 10.1088/0957-0233/11/6/201.10.1088/0957-0233/11/6/201
  11. [11] Parker, P.A. (2001). Cryogenic balance technology at the National Transonic Facility. In 39th AIAA Aerospace Sciences Meeting & Exhibit. AIAA-2001-0758.10.2514/6.2001-758
  12. [12] Burns, D.E., Williams, Q.L., Phillips, B.D., Commo, S.A. (2016). Review of potential wind tunnel balance technologies. In 10th International Symposium on Strain-Gauge Balances.
  13. [13] Hou, J.W., Twu, S.L. (1987). Optimum design of internal strain-gage balances: An example of three-dimensional shape optimization. Journal of Mechanical Design, 109 (2), 257-262. doi:10.1115/1.3267448.10.1115/1.3267448
  14. [14] Lindell, M.C., Center, L.R. (1996). Finite element analysis of a NASA National Transonic Facility wind tunnel balance. In International Symposium on Strain-Gauge Balances.
  15. [15] Zhai, J., Ewald, B., Hufnagel, K. (1995). Investigation on the interference of internal six-component wind tunnel balances with FEM. In ICIASF ‘95 Record. International Congress on Instrumentation in Aerospace Simulation Facilities. IEEE.10.1109/ICIASF.1995.519122
  16. [16] Parker, P.A., DeLoach, R. (2002). Structural optimization of a force balance using a computational experiment design. In 40th AIAA Aerospace Sciences Meeting & Exhibit, AIAA 2002-0540.10.2514/6.2002-540
  17. [17] Rhew, R.D. (2005). Strain-Gage balance axial section design optimization using design of experiments. In U.S. Air Force T&E Days, AIAA 2005-7600. doi: 10.2514/6.2005-7600.10.2514/6.2005-7600
  18. [18] Sun, Y., Liu, Y., Zou, T., Jin, M., Liu, H. (2015). Design and optimization of a novel six-axis force/torque sensor for space robot. Measurement, 65, 135-148. doi: 10.1016/j.measurement.2015.01.005.10.1016/j.measurement.2015.01.005
  19. [19] Vadassery, P., Joshi, D.D., Rolim, T.C., Lu, F.K. (2013). Design and testing of an external drag balance for a hypersonic shock tunnel. Measurement, 46, 2110–2117. doi: 10.1016/j.measurement.2013.03.011.10.1016/j.measurement.2013.03.011
  20. [20] Nouri, N.M., Mostafapour, K., Kamran, M., Bohadori, R. (2014). Design methodology of a six-component balance for measuring forces and moments in water tunnel tests. Measurement, 58, 544-555. doi: 10.1016/j.measurement.2014.09.011.10.1016/j.measurement.2014.09.011
  21. [21] Lynn, K.C. (2015). Flexural fillet geometry optimization for design of force transducers used in aerodynamic testing. In 53rd AIAA Aerospace Sciences Meeting, AIAA 2015-1789. doi: 10.2514/6.2015-1789.10.2514/6.2015-1789
  22. [22] Tavakolpour-Saleh, A.R., Setoodeh, A.R., Gholamzadeh, M. (2016). A novel multi-component strain-gauge external balance for wind tunnel tests: Simulation and experiment. Sensors and Actuators, A: Physical, 247, 172-186. doi:10.1016/j.sna.2016.05.035.10.1016/j.sna.2016.05.035
  23. [23] Kolhapure, R., Shinde, V., Kamble, V. (2017). Geometrical optimization of strain gauge force transducer using GRA method. Measurement, 101, 111-117. doi: 10.1016/j.measurement.2017.01.030.10.1016/j.measurement.2017.01.030
  24. [24] Akbari, H., Kazerooni, A. (2018). Improving the coupling errors of a Maltese cross-beams type six-axis force/moment sensor using numerical shape-optimization technique. Measurement, 126, 342-355. doi: 10.1016/j.measurement.2018.05.074.10.1016/j.measurement.2018.05.074
  25. [25] Park, H.S., Dang, X.P. (2010). Structural optimization based on CADCAE integration and metamodeling techniques. Computer-Aided Design, 42 (10), 889-902. doi: 10.1016/j.cad.2010.06.003.10.1016/j.cad.2010.06.003
  26. [26] Chandrasegaran, S.K., Ramani, K., Sriram, R.D., Horváth, I., Bernard, A., Harik, R.F., Gao, W. (2013). The evolution, challenges, and future of knowledge representation in product design systems. Computer-Aided Design, 45 (2), 204-228. doi: 10.1016/j.cad. 2012.08.006.10.1016/j.cad.2012.08.006
  27. [27] Dang, X.P. (2014). General frameworks for optimization of plastic injection molding process parameters. Simulation Modelling Practice and Theory, 41, 15-27. doi: 10.1016/j.simpat.2013.11.003.10.1016/j.simpat.2013.11.003
  28. [28] Vidanović, N., Rašuo, B., Kastratović, G., Maksimović, S., Ćurčić, D., Samardžić, M. (2017). Aerodynamic–structural missile fin optimization. Aerospace Science and Technology, 65, 26-45. doi: 10.1016/j.ast.2017.02. 010.10.1016/j.ast.2017.02.010
  29. [29] Dassault Systèmes SIMULIA. (2012). Isight 5.7. User’s Guide.
Language: English
Page range: 22 - 34
Submitted on: Jul 14, 2019
Accepted on: Jan 20, 2020
Published on: Feb 24, 2020
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2020 Guangwei Xiang, Peng Mi, Guoqing Yi, Chao Wang, Wei Liu, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.