Have a personal or library account? Click to login
Measuring the Moment and the Magnitude of the Abrupt Change of the Gaussian Process Bandwidth Cover

Measuring the Moment and the Magnitude of the Abrupt Change of the Gaussian Process Bandwidth

Open Access
|Nov 2019

References

  1. [1] Zhigljavsky, A.A., Krasnovsky, A.E. (1988). Detection of the Abrupt Change of Random Processes in Radio Engineering Problems. Leningrad State University. (in Russian)
  2. [2] Kligene, N., Tel'ksnis, L. (1983). Methods to determine the times when the properties of random processes change. Automation and Remote Control, 41 (10), 1241-1283.
  3. [3] Basseville, M., Nikiforov, I.V. (1993). Detection of Abrupt Changes: Theory and Application. Prentice-Hall.
  4. [4] Konev, V., Vorobeychikov, S. (2017). Quickest detection of parameter changes in stochastic regression: Nonparametric CUSUM. IEEE Transactions on Information Theory, 63 (9), 5588-5602.10.1109/TIT.2017.2673825
  5. [5] Hanus, R., Kowalczyk, A., Chorzȩpa, R. (2018). Application of conditional averaging to time delay estimation of random signals. Measurement Science Review, 18 (4), 130-137.10.1515/msr-2018-0019
  6. [6] Trifonov, A.P., Nechaev, E.P., Parfenov, V.I. (1991). Detection of Stochastic Signals with Unknown Parameters. Voronezh State University. (in Russian)
  7. [7] Van Trees, H.L., Bell, K.L., Tian, Z. (2013). Detection, Estimation, and Modulation Theory: Part I - Detection, Estimation, and Filtering Theory. Wiley.
  8. [8] Chernoyarov, O.V., Shahmoradian, M.M., Kalashnikov, K.S. (2016). The decision statistics of the Gaussian signal against correlated Gaussian interferences. In 2016 International Conference on Mathematical, Computational and Statistical Sciences and Engineering, 30-31 October 2016, Shenzhen, China. DEStech Publications, 426-431.
  9. [9] Trifonov, А.P., Shinakov, Yu.S. (1986). Joint Discrimination of Signals and Estimation of their Parameters against Background. Radio i Svyaz'. (in Russian)
  10. [10] Chernoyarov, O.V., Sai Si Thu Min, Salnikova, A.V., Shakhtarin, B.I., Artemenko, A.A. (2014). Application of the local Markov approximation method for the analysis of information processes processing algorithms with unknown discontinuous parameters. Applied Mathematical Sciences, 8 (90), 4469-4496.10.12988/ams.2014.46415
  11. [11] Kailath, T. (1966). Some integral equations with nonrational kernals. IEEE Transactions on Information Theory, 12 (4), 442-447.10.1109/TIT.1966.1053925
  12. [12] Chernoyarov, O.V., Salnikova, A.V., Rozanov, A.E., Marcokova, M. (2014). Statistical characteristics of the magnitude and location of the greatest maximum of Markov random process with piecewise constant drift and diffusion coefficients. Applied Mathematical Sciences, 8 (147), 7341-7357.10.12988/ams.2014.49740
  13. [13] Zakharov, A.V., Pronyaev, E.V., Trifonov, A.P. (2001). Detection of step random disturbance. Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, (6), 29-37.
Language: English
Page range: 250 - 256
Submitted on: Jul 12, 2019
|
Accepted on: Nov 7, 2019
|
Published on: Nov 21, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2019 Oleg Chernoyarov, Mariana Marčokova, Alexandra Salnikova, Maksim Maksimov, Alexander Makarov, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.