Have a personal or library account? Click to login
Detection of Deterioration of Three-phase Induction Motor using Vibration Signals Cover

Detection of Deterioration of Three-phase Induction Motor using Vibration Signals

Open Access
|Nov 2019

References

  1. [1] Tulicki, J., Petryna, J., Sulowicz, M. (2016). Fault diagnosis of induction motors in selected working conditions based on axial flux signals. Technical Trasactions, Electrical Engineering Issue 3-E, 99-113. DOI: 10.4467/2353737XCT.16.269.6068.10.4467/2353737XCT.16.269.6068
  2. [2] Ewert, P. (2017). Use of axial flux in the detection of electrical faults in induction motors. In International Symposium on Electrical Machines (SME). IEEE, DOI: 10.1109/ISEM.2017.7993571.10.1109/ISEM.2017.7993571
  3. [3] Pietrowski, W. (2011). Application of Radial Basis Neural Network to diagnostics of induction motor stator faults using axial flux. Przeglad Elektrotechniczny, 87 (6), 190-192.
  4. [4] Fulnecek, J., Misak, S. (2018). Stator current and axial magnetic flux analysis of induction motor. In International Conference on Diagnostics in Electrical Engineering (Diagnostika). IEEE, DOI: 10.1109/DIAGNOSTIKA.2018.8526025.10.1109/DIAGNOSTIKA.2018.8526025
  5. [5] Calis, H. (2014). Vibration and motor current analysis of induction motors to diagnose mechanical faults. Journal of Measurements in Engineering, 2 (4), 190-198.
  6. [6] Garcia-Bracamonte, J.E., Ramirez-Cortes, J.M., Rangel-Magdaleno, J.D., Gomez-Gil, P., Peregrina-Barreto, H., Alarcon-Aquino, V. (2019). An approach on MCSA-based fault detection using independent component analysis and neural networks. IEEE Transactions on Instrumentation and Measurement, 68 (5), 1353-1361. DOI: 10.1109/TIM.2019.2900143.10.1109/TIM.2019.2900143
  7. [7] Verucchi, C., Bossio, J., Bossio, G., Acosta, G. (2016). Misalignment detection in induction motors with flexible coupling by means of estimated torque analysis and MCSA. Mechanical Systems and Signal Processing, 80, 570-581. DOI: 10.1016/j.ymssp.2016.04.035.10.1016/j.ymssp.2016.04.035
  8. [8] Ciszewski, T., Swedrowski, L., Gelman, L. (2015). Induction motor bearings diagnostic using MCSA and normalized tripple covariance. In IEEE 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED). IEEE, 333-337. DOI: 10.1109/DEMPED.2015.7303711.10.1109/DEMPED.2015.7303711
  9. [9] Valles-Novo, R., Rangel-Magdaleno, J., Ramirez-Cortes, J., Peregrina-Barreto, H., Morales-Caporal, R. (2014). Broken bar detection on squirrel cage induction motors with MCSA and EMD. In IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings. IEEE, 993-998. DOI: 10.1109/I2MTC.2014.6860892.10.1109/I2MTC.2014.6860892
  10. [10] Garcia-Ramirez, A.G., Morales-Hernandez, L.A., Osornio-Rios, R.A., Garcia-Perez, A., Romero-Troncoso, R.J. (2014). Thermographic technique as a complement for MCSA in induction motor fault detection. In International Conference on Electrical Machines (ICEM). IEEE, 1940-1945. DOI: 10.1109/ICELMACH.2014.6960449.10.1109/ICELMACH.2014.6960449
  11. [11] Glowacz, A., Glowacz, Z. (2017). Diagnosis of the three-phase induction motor using thermal imaging. Infrared Physics & Technology, 81, 7-16. DOI: 10.1016/j.infrared.2016.12.003.10.1016/j.infrared.2016.12.003
  12. [12] Zhang, C., Peng, Z.X., Chen, S., Li, Z.X., Wang, J.G. (2018). A gearbox fault diagnosis method based on frequency-modulated empirical mode decomposition and support vector machine. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232 (2), 369-380. DOI: 10.1177/0954406216677102.10.1177/0954406216677102
  13. [13] Li, Z.X., Jiang, Y., Duan, Z.H., Peng, Z.X. (2018). A new swarm intelligence optimized multiclass multi-kernel relevant vector machine: An experimental analysis in failure diagnostics of diesel engines. Structural Health Monitoring, 17 (6), 1503-1519. DOI: 10.1177/1475921717746735.10.1177/1475921717746735
  14. [14] Xi, W.K., Li, Z.X., Tian, Z., Duan, Z.H. (2018). A feature extraction and visualization method for fault detection of marine diesel engines. Measurement, 116, 429-437. DOI: 10.1016/j.measurement.2017.11.035.10.1016/j.measurement.2017.11.035
  15. [15] Wang, T.Y., Han, Q.K., Chu, F.L., Feng, Z.P. (2019). Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: A review. Mechanical Systems and Signal Processing, 126, 662-685. DOI: 10.1016/j.ymssp.2019.02.051.10.1016/j.ymssp.2019.02.051
  16. [16] Ebrahimi, E. (2019). A method based on support vector machine and vibration analysis for fault detection in bevel gears (Case study: Differential). Insight, 61 (5), 279-286. DOI: 10.1784/insi.2019.61.5.279.10.1784/insi.2019.61.5.279
  17. [17] Chomphan, S. (2019). Vibration signal analysis of a motorcycle. International Journal of GEOMATE, 16 (56), 27-32. DOI: 10.21660/2019.56.4549.10.21660/2019.56.4549
  18. [18] Isham, M.F., Leong, M.S., Heel, L.M., Ahmad, Z.A.B. Iterative variational mode decomposition and extreme learning machine for gearbox diagnosis based on vibration signals. Journal of Mechanical Engineering and Sciences, 13 (1), 4477-4492. DOI: 10.15282/jmes.13.1.2019.10.0380.10.15282/jmes.13.1.2019.10.0380
  19. [19] Sikora, M., Szczyrba, K., Wrobel, L., Michalak, M. (2019). Monitoring and maintenance of a gantry based on a wireless system for measurement and analysis of the vibration level. Eksploatacja i Niezawodnosc (Maintenance and Reliability), 21 (2), 341-350. DOI: 10.17531/ein.2019.2.19.10.17531/ein.2019.2.19
  20. [20] Chang, H.C., Jheng, Y.M., Kuo, C.C., Hsueh, Y.M. (2019). Induction motors condition monitoring system with fault diagnosis using a hybrid approach. Energies, 12 (8). DOI: 10.3390/en12081471.10.3390/en12081471
  21. [21] Suh, S., Lee, H., Jo, J., Lukowicz, P., Lee, Y.O. (2019). Generative oversampling method for imbalanced data on bearing fault detection and diagnosis. Applied Sciences-Basel, 9 (4). DOI: 10.3390/app9040746.10.3390/app9040746
  22. [22] Gangsar, P., Tiwari, R. (2019). Diagnostics of mechanical and electrical faults in induction motors using wavelet-based features of vibration and current through support vector machine algorithms for various operating conditions. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41 (2). DOI: 10.1007/s40430-019-1574-5.10.1007/s40430-019-1574-5
  23. [23] Gowid, S., Dixon, R., Ghani, S., Shokry, A. (2019). Robustness analysis of the FFT-based segmentation, feature selection and machine fault identification algorithm. Insight, 61 (5), 271-278. DOI: 10.1784/insi.2019.61.5.271.10.1784/insi.2019.61.5.271
  24. [24] Parey, A., Singh, A. (2019). Gearbox fault diagnosis using acoustic signals, continuous wavelet transform and adaptive neuro-fuzzy inference system. Applied Acoustics, 147, 133-140. DOI: 10.1016/j.apacoust.2018.10.013.10.1016/j.apacoust.2018.10.013
  25. [25] Islam, M.M.M., Kim, J.M. (2019). Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector Machines. Reliability Engineering & System Safety, 184, 55-66. DOI: 10.1016/j.ress.2018.02.012.10.1016/j.ress.2018.02.012
  26. [26] Fushun, L., Shujian, G., Huawei, H., Zhe, T., Peng, L. (2019). Interference reduction of high-energy noise for modal parameter identification of offshore wind turbines based on iterative signal extraction. Ocean Engineering, 183, 372–383. DOI: 10.1016/j.oceaneng.2019.05.009.10.1016/j.oceaneng.2019.05.009
  27. [27] Hasan, M.J., Kim, J.M. (2019). Fault detection of a spherical tank using a genetic algorithm-based hybrid feature pool and k-nearest neighbor algorithm. Energies, 12 (6). DOI: 10.3390/en12060991.10.3390/en12060991
  28. [28] Xiong, J.B., Zhang, Q.H., Peng, Z.P., Sun, G.X., Xu, W.C., Wang, Q. (2015). A diagnosis method for rotation machinery faults based on dimensionless indexes combined with k-nearest neighbor algorithm. Mathematical Problems in Engineering. DOI: 10.1155/2015/563954.10.1155/2015/563954
  29. [29] Zhou, Y.Q., Sun, B.T., Li F.P., Song, W.L. (2015). NC machine tools fault diagnosis based on kernel PCA and k-nearest neighbor using vibration signals. Shock and Vibration. DOI: 10.1155/2015/139217.10.1155/2015/139217
  30. [30] Yadav, A., Swetapadma, A. (2015). A novel transmission line relaying scheme for fault detection and classification using wavelet transform and linear discriminant analysis. Ain Shams Engineering Journal, 6, 199-209. DOI: 10.1016/j.asej.2014.10.005.10.1016/j.asej.2014.10.005
  31. [31] Haddad, R.Z., Strangas, E.G. (2016). On the accuracy of fault detection and separation in permanent magnet synchronous machines using MCSA/MVSA and LDA. IEEE Transactions on Energy Conversion, 31, 924-934. DOI: 10.1109/TEC.2016.2558183.10.1109/TEC.2016.2558183
  32. [32] Fu, W.L., Tan, J.W., Xu, Y.H., Wang, K., Chen, T. (2019). Fault diagnosis for rolling bearings based on fine-sorted dispersion entropy and SVM optimized with mutation SCA-PSO. Entropy, 21 (4). DOI: 10.3390/e21040404.10.3390/e21040404751489133267118
  33. [33] Jiang, Q.Y., Chang, F.L. (2019), A novel rolling-element bearing faults classification method combines lower-order moment spectra and support vector machine. Journal of Mechanical Science and Technology, 33 (4), 1535-1543. DOI: 10.1007/s12206-019-0305-2.10.1007/s12206-019-0305-2
  34. [34] Gajewski, J., Valis, D. (2017). The determination of combustion engine condition and reliability using oil analysis by MLP and RBF neural networks. Tribology International, 115, 557-572. DOI: 10.1016/j.triboint.2017.06.032.10.1016/j.triboint.2017.06.032
  35. [35] Hu, Z.B., Su, J., Jotsov, V., Kochan, O., Mykyichuk, M., Kochan, R., Sasiuk, T. (2016). Data science applications to improve accuracy of thermocouples. In IEEE 8th International Conference on Intelligent Systems (IS). IEEE, 180-188. DOI: 10.1109/IS.2016.7737419.10.1109/IS.2016.7737419
  36. [36] Glowacz, A., Glowacz, Z. (2016). Recognition of images of finger skin with application of histogram, image filtration and K-NN classifier. Biocybernetics and Biomedical Engineering, 36, 95-101. DOI: 10.1016/j.bbe.2015.12.005.10.1016/j.bbe.2015.12.005
Language: English
Page range: 241 - 249
Submitted on: Jun 8, 2019
|
Accepted on: Oct 21, 2019
|
Published on: Nov 21, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2019 Adam Glowacz, Witold Glowacz, Jarosław Kozik, Krzysztof Piech, Miroslav Gutten, Wahyu Caesarendra, Hui Liu, Frantisek Brumercik, Muhammad Irfan, Z. Faizal Khan, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.