Have a personal or library account? Click to login
On the Minimal Adequate Sampling Frequency of the Photoplethysmogram for Pulse Rate Monitoring and Heart Rate Variability Analysis in Mobile and Wearable Technology Cover

On the Minimal Adequate Sampling Frequency of the Photoplethysmogram for Pulse Rate Monitoring and Heart Rate Variability Analysis in Mobile and Wearable Technology

Open Access
|Oct 2019

References

  1. [1] Bunn, J.A., Navalta, J.W, Fountaine, C.J., Reece, J.D. (2018). Current state of commercial wearable technology in physical activity monitoring 2015-2017. International Journal of Exercise Science, 11 (7), 503-515.10.70252/NJQX2719
  2. [2] Liu, Y., Wang, H., Zhao, W., Zhang, M., Qin, H., Xie, Y. (2018). Flexible, stretchable sensors for wearable health monitoring: Sensing mechanisms, materials, fabrication strategies and features. Sensors (Basel), 18 (2), 645.10.3390/s18020645585601529470408
  3. [3] Kumar, A., Komaragiri, R., Kumar, M. (2018). From pacemaker to wearable: Techniques for ECG detection systems. Journal of Medical Systems, 42 (2), 34.10.1007/s10916-017-0886-129322351
  4. [4] Pinheiro, E., Postolache, O. (2008). A wireless monitoring system for health care applications. In The Sixth IASTED International Conference on Biomedical Engineering, 13-15 February 2008, Innsbruck, Austria. Acta Press, 372-377.
  5. [5] Pollonini, L., Rajan, N.O., Xu, S., Madala, S., Dacso, C.C. (2010). A novel handheld device for use in remote patient monitoring of heart failure patients—design and preliminary validation on healthy subjects. Journal of Medical Systems, 36 (2), 653-659.10.1007/s10916-010-9531-y
  6. [6] Silva, I., Moody, G.B., Celi, L. (2011). Improving the quality of ECGs collected using mobile phones: The PhysioNet/Computing in Cardiology Challenge 2011. Computing in Cardiology, 38, 273-276.
  7. [7] Quintana, D.S., Heathers, J.A., Kemp, A.H. (2012). On the validity of using the Polar RS800 heart rate monitor for heart rate variability research. European Journal of Applied Physiology, 112 (12), 4179-4180.10.1007/s00421-012-2453-222790488
  8. [8] Kovács, L., Kézér, F.L., Jurkovich, V., Kulcsár- Huszenicza, M., Tőzsér, J. (2015). Heart rate variability as an indicator of chronic stress caused by lameness in dairy cows. PLoS One, 10 (8), e0134792.10.1371/journal.pone.0134792453612026270563
  9. [9] Bouts, A.M., Brackman, L., Martin, E., Subasic, A.M., Potkanowicz, E.S. (2018). The accuracy and validity of iOS-based heart rate apps during moderate to high intensity exercise. International Journal of Exercise Science, 11 (7), 533-540.10.70252/QWRT8315
  10. [10] Shcherbina, A., Mattsson, C.M., Waggott, D., Salisbury, H., Christle, J.W., Hastie, T., Wheeler, M.T., Ashley, E.A. (2017). Accuracy in wrist-worn, sensor- based measurements of heart rate and energy expenditure in a diverse cohort. Journal of Personalized Medicine, 7 (2).10.3390/jpm7020003549197928538708
  11. [11] Stahl, S.E., An, H.S., Dinkel, D.M., Noble, J.M., Lee, J.M. (2016). How accurate are the wrist-based heart rate monitors during walking and running activities? Are they accurate enough? BMJ Open Sport and Exercise Medicine, 2 (1), e000106.10.1136/bmjsem-2015-000106511706627900173
  12. [12] Wallen, M.P., Gomersall, S.R., Keating, S.E., Wisløff, U., Coombes, J.S. (2016). Accuracy of heart rate watches: Implications for weight management. PLoS One, 11 (5), e0154420.10.1371/journal.pone.0154420488374727232714
  13. [13] Atlasz, T., Kellényi, L., Kovács, P., Babai, N., Thuróczy, G., Hejjel, L., Hernádi, I. (2006) The application of surface plethysmography for heart rate variability analysis after GSM radiofrequency exposure. Journal of Biochemical and Biophysical Methods, 69 (1-2), 233-236.10.1016/j.jbbm.2006.03.01716725204
  14. [14] Spierer, D.K., Rosen, Z., Litman, L.L., Fujii, K. (2015). Validation of photoplethysmography as a method to detect heart rate during rest and exercise. Journal of Medical Engineering and Technology, 39 (5), 264-271.10.3109/03091902.2015.104753626112379
  15. [15] Vandenberk, T., Stans, J., Mortelmans, C., Van Haelst, R., Van Schelvergem, G., Pelckmans, C., Smeets, C.J., Lanssens, D., De Canniere, H., Storms, V., Thijs, I.M., Veas, B., Vandervoort, P.M. (2017). Clinical validation of heart rate apps: Mixed-methods evaluation study. JMIR mHealth and uHealth, 5 (8), e129.10.2196/mhealth.7254559140528842392
  16. [16] Peng, R.C., Zhou, X.L., Lin, W.H., Zhang, Y.T. (2015). Extraction of heart rate variability from smartphone photoplethysmograms. Computational and Mathematical Methods in Medicine, 2015, 516826.10.1155/2015/516826
  17. [17] Madan, C.R., Harrison, T., Mathewson, K.E. (2018). Noncontact measurement of emotional and physiological changes in heart rate from a webcam. Psychophysiology, 55 (4).10.1111/psyp.13005
  18. [18] Macwan, R., Benezeth, Y., Mansouri, A. (2018). Remote photoplethysmography with constrained ICA using periodicity and chrominance constraints. BioMedical Engineering OnLine, 17 (1), 22.10.1186/s12938-018-0450-3
  19. [19] Smith, S.W. (2003). Digital Signal Processing: A Practical Guide for Engineers and Scientists. 1st Edition. Newnes.
  20. [20] Hejjel, L., Rőth, E. (2004). What is the adequate sampling interval of the ECG signal for heart rate variability analysis in the time domain? Physiological Measurement, 25, 1405-1411.10.1088/0967-3334/25/6/006
  21. [21] García-González, M.A., Fernández-Chimeno, M., Ramos-Castro, J. (2004). Bias and uncertainty in heart rate variability spectral indices due to the finite ECG sampling frequency. Physiological Measurement, 25 (2), 489-504.10.1088/0967-3334/25/2/008
  22. [22] Singh, B., Singh, M., Banga, V.K. (2014). Sample entropy based HRV: Effect of ECG sampling frequency. Biomedical Science and Engineering, 2 (3), 68-72.
  23. [23] Ziemssen, T., Gasch, J., Ruediger, H. (2008). Influence of ECG sampling frequency on spectral analysis of RR intervals and baroreflex sensitivity using the EUROBAVAR data set. Journal of Clinical Monitoring and Computing, 22 (2), 159-68.10.1007/s10877-008-9117-0
  24. [24] Daskalov, I.K., Christov, I.I. (1997). Improvement of resolution in measurement of electrocardiogram RR intervals by interpolation. Medical Engineering and Physics, 19, 375-379.10.1016/S1350-4533(96)00067-7
  25. [25] Baek, H.J., Shin, J., Jin, G., Cho, J. (2017). Reliability of the parabola approximation method in heart rate variability analysis using low-sampling-rate photoplethysmography. Journal of Medical Systems, 41 (12), 189.10.1007/s10916-017-0842-029063975
  26. [26] Mahdiani, S., Jeyhani, V., Peltokangas, M., Vehkaoja, A. (2015). Is 50 Hz high enough ECG sampling frequency for accurate HRV analysis? In 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 25-29 August 2015, Milan, Italy. IEEE, 5948-5951.10.1109/EMBC.2015.7319746
  27. [27] Choi, A., Shin, H. (2017). Photoplethysmography sampling frequency: Pilot assessment of how low can we go to analyze pulse rate variability with reliability? Physiological Measurement, 38 (3), 586-600.10.1088/1361-6579/aa5efa28169836
  28. [28] Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 1043-1065.
  29. [29] Elgendi, M. (2012). On the analysis of fingertip photoplethysmogram signals. Current Cardiology Reviews, 8 (1), 14-25.10.2174/157340312801215782339410422845812
  30. [30] Shannon, C.E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27 (3), 379-423.10.1002/j.1538-7305.1948.tb01338.x
  31. [31] Shannon, C.E. (1949). Communications in the presence of noise. Proceedings of IRE, 37, 10-21.10.1109/JRPROC.1949.232969
Language: English
Page range: 232 - 240
Submitted on: Feb 20, 2019
|
Accepted on: Aug 30, 2019
|
Published on: Oct 7, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2019 Szabolcs Béres, Lőrinc Holczer, László Hejjel, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.