Have a personal or library account? Click to login
Fault Prognosis of Hydraulic Pump Based on Bispectrum Entropy and Deep Belief Network Cover

Fault Prognosis of Hydraulic Pump Based on Bispectrum Entropy and Deep Belief Network

By: Hongru Li,  Zaike Tian,  He Yu and  Baohua Xu  
Open Access
|Oct 2019

References

  1. [1] Ahmad, R., Kamaruddin, S. (2012). An overview of time-based and condition-based maintenance in industrial application. Computers & Industrial Engineering, 63 (1), 135-149.10.1016/j.cie.2012.02.002
  2. [2] Sun, J., Li, H., Wang, W., Ye, P. (2015). Morphological undecimated wavelet decomposition fusion algorithm and its application on fault feature extraction of hydraulic pump. Transactions of Nanjing University of Aeronautics and Astronautics, 32 (3), 268-278.
  3. [3] Sun, J., Li, H., Xu, B. (2016). The morphological undecimated wavelet decomposition-discrete cosine transform composite spectrum fusion algorithm and its application on hydraulic pump. Measurement, 94, 794-805.10.1016/j.measurement.2016.09.024
  4. [4] Hinton, G.E., Salakhutdinov, R.R. (2006). Reducing the dimensionality of data with neural networks. Science, 313 (5786), 504-507.10.1126/science.1127647
  5. [5] Wang, Y.G., Cao, F.L., Yuan, Y.B. (2011) A study on effectiveness of extreme learning machine. Neurocomputing, 74 (16), 2483-2490.10.1016/j.neucom.2010.11.030
  6. [6] Kuremoto, T., Kimura, S., Kobayashi, K., Obayashi, M. (2014). Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing, 137, 47-56.10.1016/j.neucom.2013.03.047
  7. [7] Theodorakopoulos, I., Kastaniotis, D., Economou, G., Fotopoulos, S. (2014). Pose-based human action recognition via sparse representation in dissimilarity space. Journal of Visual Communication and Image Representation, 25 (1), 12-23.10.1016/j.jvcir.2013.03.008
  8. [8] Lefebvre, G., Berlemont, S., Mamalet, F., Garcia, C. (2013). BLSTM-RNN based 3D gesture classification. In Artificial Neural Networks and Machine Learning – ICANN 2013. Springer, LNCS 8131, 381-388.10.1007/978-3-642-40728-4_48
  9. [9] Tran, V.T., Althobiani, F., Ball, A. (2014). An approach to fault diagnosis of reciprocation compressor valves using Teager-Kaiser energy operator and deep belief networks. Expert Systems with Applications, 41 (9), 4113-4122.10.1016/j.eswa.2013.12.026
  10. [10] Roy, P.P., Chherawala, Y., Cheriet, M. (2014). Deep belief network based rescoring approach for handwritten word recognition. In 14th International Conference on Frontiers in Handwriting Recognition. IEEE, 506-511.10.1109/ICFHR.2014.91
  11. [11] Mohamed, A.R., Dahl, G.E., Hinton, G. (2012). Acoustic modeling using deep belief networks. IEEE Transactions on Audio, Speech, & Language Processing, 20 (1), 14-22.10.1109/TASL.2011.2109382
  12. [12] Lee, H., Grosse, R., Ranganath, R., Ng, A.Y. (2011). Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM, 54 (10), 95-103.10.1145/2001269.2001295
  13. [13] Shen, G.J., Stephen, M., Xu, Y.C., White, P. (2014). Theoretical and experimental analysis of bispectrum of vibration signals for fault diagnosis of gears. Mechanical Systems and Signal Processing, 43 (1-2), 76-89.10.1016/j.ymssp.2013.08.023
  14. [14] Gu, F., Shao, Y., Hu, N., Naid, A., Ball, A.D. (2011). Electrical motor current signal analysis using a modified bispectrum for fault diagnosis of downstream mechanical equipment. Mechanical Systems and Signal Processing, 25 (1), 360-372.10.1016/j.ymssp.2010.07.004
  15. [15] Zhou, Y.B., Liu, Y.B., Li, H., Teng, W., Li, Z. (2013). Fault feature extraction for gear crack based on bispectral entropy. China Mechanical Engineering, 24 (2), 190-194.
  16. [16] Hou, S., Li, Y., Xu, Y., Ma, C. (2016). Applications of dual-tree complex wavelet transform and bispectrum in roller bearing fault diagnosis. Noise and Vibration Control, 36 (5), 133-136.
  17. [17] Jin, Z.Y., Lu, Y.G., Zhang, B., Yao, X.L. (2016). Applications of bispectrum analysis of intrinsic model function in the blade rack recognition. Noise and Vibration Control, 36 (5), 153-156.
  18. [18] Lee, M.G., Kim, C., Pavlina, E.J., Barlat, F. (2011). Advances in sheet forming materials modeling, numerical simulation, and press technologies. Journal of Manufacturing Science and Engineering, 133 (6), 1001-1012.10.1115/1.4005117
  19. [19] Huang, J.Y., Pan, H.X., Bi, S.H., Cui, B.Z. (2012). Fault pattern recognition based on bispectrum entropy model. Acta Armamentarii, 33 (6), 718-722.
  20. [20] Qiao, J.F., Pan, G.Y., Han, H.G. (2015). Design and application of continuous deep belief network. Acta Automatica Sinica, 41 (12), 2138-2146.
  21. [21] Chen, C., Liu, K., Kehtarnavaz, N. (2016). Real-time human action recognition based on depth motion maps. Journal of Real Time Image Processing, 12 (1), 155-163.10.1007/s11554-013-0370-1
  22. [22] Lu, X.H., Pan, D.F., Han, K., Li, J.S. (2016). Railway short-term wind speed prediction based on improved QPSO-WNN rolling algorithm. Journal of Railway Science and Engineering, 13 (5), 978-984.
  23. [23] Sun, J., Li, H.R., Tian, Z.K. (2016). A degradation feature extraction method for hydraulic pumps based on fusion of sensitive components. Chinese Journal of Scientific Instrument, 37 (6), 1290-1298.
  24. [24] Huang, B., Feng, G., Tang, X., Gu, J.X., Xu, G., Cattley, R., Gu, F., Ball, A.D. (2019). A performance evaluation of two bispectrum analysis methods applied to electrical current signals for monitoring induction motor-driven systems. Energies, 12 (8), 1438.10.3390/en12081438
  25. [25] Zhou, Y.B., Liu, Y.B., Li, H., Teng, W., Li, Z. (2013). Fault feature extraction for gear crack based on bispecral entropy. China Mechanical Engineering, 24 (2), 190-194.
  26. [26] Tamilselvan, P., Wang, P. (2013). Failure diagnosis using deep belief learning based health state classification. Reliability Engineering & System Safety, 115, 124-135.10.1016/j.ress.2013.02.022
  27. [27] Fu, Y., Zhang, Y., Qiao, H., Li, D., Zhou, H., Leopold, J. (2015). Analysis of feature extracting ability for cutting state monitoring using deep belief networks. Procedia CIRP, 31, 29-34.10.1016/j.procir.2015.03.016
  28. [28] Shao, H., Jiang, H., Zhang, X., Niu, M. (2015). Rolling bearing fault diagnosis using an optimization deep belief network. Measurement Science & Technology, 26 (11), 1-17.10.1088/0957-0233/26/11/115002
  29. [29] Zhao, G.Q., Liu, Y.F., Zhang, B., Hu, C. (2017). Lithium-ion battery remaining useful life prediction with Deep Belief Network and Relevance Vector Machine. In IEEE International Conference on Prognostics and Health Management (ICPHM). IEEE, 7-13.10.1109/ICPHM.2017.7998298
  30. [30] Zhao, R., Yan, R.Q., Chen, Z.H., Mao, K.Z., Wang, P., Gao, R.X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213-237.10.1016/j.ymssp.2018.05.050
Language: English
Page range: 195 - 203
Submitted on: Feb 6, 2019
Accepted on: Aug 30, 2019
Published on: Oct 7, 2019
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2019 Hongru Li, Zaike Tian, He Yu, Baohua Xu, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.