Have a personal or library account? Click to login
Information-measuring System to Study the Thermocouple with Controlled Temperature Field Cover

Information-measuring System to Study the Thermocouple with Controlled Temperature Field

Open Access
|Aug 2019

References

  1. [1] Webster, J.G. (1998). The Measurement, Instrumentation and Sensors Handbook. CRC Press.10.1201/9781003040019
  2. [2] Glowacz, A., Glowacz, W. (2018). Vibration-based fault diagnosis of commutator motor. Shock and Vibration, 2018, 7460419.10.1155/2018/7460419
  3. [3] Lee, G.W., Kim, H.K. (2018). Personalized HRTF modeling based on deep neural network using anthropometric measurements and images of the ear. Applied Sciences, 8 (11), 2180.10.3390/app8112180
  4. [4] Stadnyk, B., Khoma, Y. (2013). Improving the accuracy of the single chip impedance analyzer for sensor applications. Sensors & Transducers, 150 (3), 27-31.
  5. [5] Glowacz, A. (2018). Acoustic-based fault diagnosis of commutator motor. Electronics, 7 (11), 299.10.3390/electronics7110299
  6. [6] Glowacz, A. (2019). Fault diagnosis of single-phase induction motor based on acoustic signals. Mechanical Systems and Signal Processing, 117, 65-80.10.1016/j.ymssp.2018.07.044
  7. [7] Przystupa, K. (2017). An attempt to use FMEA method for an approximate reliability assessment of machinery. ITM Web of Conferences, 15, 05001.10.1051/itmconf/20171505001
  8. [8] Birch, J.A. (2003). Benefit of legal metrology for the economy and society: A study for the International Committee of Legal Metrology. http://www.oiml.org/publications/E/birch/E002-e03.pdf.
  9. [9] Pohrebennyk, V., Mitryasova, O., Dzhumelia, E., Kochanek, A. (2017). Evaluation of surface water quality in mining and chemical industry. In Proceedings of the 17th International Multidisciplinary Scientific GeoConference (SGEM 2017). SGEM, Vol. 17 (51), 425-432.10.5593/sgem2017/51/S20.056
  10. [10] Zhang, Y., Chen, B., Pan, G., Zhao, Y. (2019). A novel hybrid model based on VMD-WT and PCA-BPRBF neural network for short-term wind speed forecasting. Energy Conversion and Management, 195, 180-197.10.1016/j.enconman.2019.05.005
  11. [11] Perzel, V., Flimel, M., Krolczyk, J., et al. (2017). Measurement of thermal emission during cutting of materials using abrasive water jet. Thermal Science, 21 (5), 2197-2203.10.2298/TSCI150212046P
  12. [12] Józwik, J., Ostrowski, D., Milczarczyk, R., Krolczyk, G.M. (2018). Analysis of relation between the 3D printer laser beam power and the surface morphology properties in ti-6Al-4V titanium alloy parts. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40 (4), 215.10.1007/s40430-018-1144-2
  13. [13] Zhang, Y., Wang, P., Zhang, C., Lei, S. (2017). Wind energy prediction with LS-SVM based on Lorenz perturbation. The Journal of Engineering, 2017 (13), 1724-1727.10.1049/joe.2017.0626
  14. [14] Jun, S., Kochan, O., Kochan, V., Wang, C. (2016). Development and investigation of the method for compensating thermoelectric inhomogeneity error. International Journal of Thermophysics, 37 (1), 1-14.10.1007/s10765-015-2025-x
  15. [15] Zhang, Y., Wang, P., Ni, T., Cheng, P., Lei, S. (2017). Wind power prediction based on LS-SVM model with error correction. Advances in Electrical and Computer Engineering, 17 (1), 3-9.10.4316/AECE.2017.01001
  16. [16] Kozieł, J., Przystupa, K. (2019). Using the FTA method to analyze the quality of an uninterruptible power supply unit reparation UPS. Przegląd Elektrotechniczny, 95 (1), 77-80.10.15199/48.2019.01.20
  17. [17] Fluke Corporation. Data Acquisition Units. http://www.fluke.com.
  18. [18] Smalcerz, A., Przylucki, R. (2013). Impact of electromagnetic field upon temperature measurement of induction heated charges. International Journal of Thermophysics, 34 (4), 667-679.10.1007/s10765-013-1423-1
  19. [19] Sachenko, A., Kochan, V., Turchenko, V. (2003). Instrumentation for gathering data [DAQ systems]. IEEE Instrumentation & Measurement Magazine, 6 (3), 34-40.10.1109/MIM.2003.1238339
  20. [20] Jun, S., Kochan, O. (2015). The mechanism of the occurrence of acquired thermoelectric inhomogeneity of thermocouples and its effect on the result of temperature measurement. Measurement Techniques, 57 (10), 1160-1166.10.1007/s11018-015-0596-3
  21. [21] Körtvélyessy, L. (1981). Thermoelement Praxis. Vulkan-Verlag.
  22. [22] Heyer, D., Noatsch, U., Tegeler, E., et al. (2007). Intercomparison of the realization of the ITS-90 at the freezing points of Al and Ag among European NMIs. International Journal of Thermophysics, 28 (6), 1964-1975.10.1007/s10765-007-0283-y
  23. [23] Southworth, D.J. (1999). Temperature Calibration with Isotech Block Baths: Handbook of Isothermal Corporation Limited. Isotech.
  24. [24] Sloneker, K.C. (2009). Thermocouple inhomogeneity. Ceramic Industry, 159 (4), 13-18.
  25. [25] Kim, Y.G., Song, C.H., Gam, K.S., Yang, I. (2009). Change in inhomogeneity with temperature between 180°C and 950°C in base-metal thermocouples. Measurement Science and Technology, 20 (7), 075102.10.1088/0957-0233/20/7/075102
  26. [26] White, W.P. (1906). The constancy of thermoelements. Physical Review, 23, 449–474.10.1103/PhysRevSeriesI.23.449
  27. [27] Trisna, B.A., Hanifa, S.A., Wiriadinata, H., et al. (2018). Effect of electrical annealing to the inhomogeneity improvement of type-S thermocouples. Journal of Physics: Conference Series, 1065, 122001.10.1088/1742-6596/1065/12/122001
  28. [28] Jun, S., Kochan, O.V., Jotsov, V.S. (2015). Methods of reducing the effect of the acquired thermoelectric inhomogeneity of thermocouples on temperature measurement error. Measurement Techniques, 58 (3), 327-331.10.1007/s11018-015-0709-z
  29. [29] Yang, Q., Kochan, R. (2013). Investigation of thermocouple’s drift speed influence on error of their heterogeneity correction. Sensors & Transducers, 160 (12), 514-520.
  30. [30] Jun, S., Kochan, O. (2014). Investigations of thermocouple drift irregularity impact on error of their inhomogeneity correction. Measurement Science Review, 14 (1), 29-34.10.2478/msr-2014-0005
  31. [31] Vasylkiv, N., Kochan, O., Kochan, R., Chyrka, M. (2009). The control system of the profile of temperature field. In 2009 IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. IEEE, 201-206.10.1109/IDAACS.2009.5342994
  32. [32] Kochan, O., Sapojnyk, H., Kochan, R. (2013). Temperature field control method based on neural network. In 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems. IEEE, Vol. 1, 21-24.10.1109/IDAACS.2013.6662632
  33. [33] Jun, S., Kochan, O., Chunzhi, W., Kochan, R. (2015). Theoretical and experimental research of error of method of thermocouple with controlled profile of temperature field. Measurement Science Review, 15 (6), 304-312.10.1515/msr-2015-0041
  34. [34] Analog Devices Inc. (2002). ADuC834: Details, datasheet, quote on part number. https://www.chipdig.com/datasheets/parts/datasheet/041/ADUC834.php.
  35. [35] Analog Devices Inc. (2002-2017). AD780, 2.5 V/3.0 V. High Precision Reference. https://www.analog.com/en/products/ad780.html.
  36. [36] iElekt.ru. Integral circuit 301HP5. http://ielekt.ru/datasheet/301nr5.pdf. (in Russian)
  37. [37] Kochan, R., Kochan, V., Sachenko, A., Maykiv, I., Stepanenko, A. (2005). Interface and reprogramming controller for dynamically reprogrammable Network Capable Application Processor (NCAP). In 2005 IEEE Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. IEEE, 639-642.10.1109/IDAACS.2005.283063
  38. [38] Yeromenko, V., Kochan, O. (2013). The conditional least squares method for thermocouples error modeling. In 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems. IEEE, Vol. 1, 157-162.10.1109/IDAACS.2013.6662661
Language: English
Page range: 161 - 169
Submitted on: Feb 26, 2019
|
Accepted on: Jul 31, 2019
|
Published on: Aug 24, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2019 Jinfei Wang, Orest Kochan, Krzysztof Przystupa, Jun Su, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.