Have a personal or library account? Click to login
Graphene Langmuir-Schaefer films Decorated by Pd Nanoparticles for NO2 and H2 Gas Sensors Cover

Graphene Langmuir-Schaefer films Decorated by Pd Nanoparticles for NO2 and H2 Gas Sensors

Open Access
|May 2019

References

  1. [1] Seiyama, T., Kato, A., Fujiishi, K., Nagatani, M. (1962). A new detector for gaseous components using semiconductive thin films. Analytical Chemistry, 34, 1502-1503.10.1021/ac60191a001
  2. [2] Basu, S., Bhattacharyya, P. (2012). Recent developments on graphene and graphene oxide based solid state gas sensors. Sensors and Actuators B, 173, 1-21.10.1016/j.snb.2012.07.092
  3. [3] Llobet, E. (2013). Gas sensors using carbon nanomaterials: A review. Sensors and Actuators B, 179, 32-45.10.1016/j.snb.2012.11.014
  4. [4] Varghese, S. S., Lonkar, S., Singh K. K., Swaminathan, S., Abdala, A. (2015). Recent advances in graphene based gas sensors. Sensors and Actuators B, 218, 160-183.10.1016/j.snb.2015.04.062
  5. [5] Wang, T., Huang, D., Yang Z. et al. (2016). A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Letters, 8 (2), 95-119.10.1007/s40820-015-0073-1622368230460270
  6. [6] Yang, S., Jiang, C., Wei, S.-H. (2017). Gas sensing in 2D materials. Applied Physics Reviews, 4, 021304.10.1063/1.4983310
  7. [7] Huo, N., Yang, S., Wei, Z. et al. (2014). Photoresponsive and gas sensing FET based on multilayer WS2 flakes. Scientific Reports, 4, 5209-5221.10.1038/srep05209404888624909387
  8. [8] Li, H., Wu, J., Yin, Z., Zhang, H. (2014). Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Accounts of Chemical Research, 47, 1067-1075.10.1021/ar400231224697842
  9. [9] Cagliani, A., Mackenzie, D., Tschammer, L.K., Pizzocchero, F., Almdal, K., Bøggild, P. (2014). Large- area nanopatterned graphene for ultrasensitive gas sensing. Nano Research, 7 (5), 743-754.10.1007/s12274-014-0435-x
  10. [10] Chung, M.G., Kim, D.-H., Seo, D.K. et al. (2012). Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sensors and Actuators B, 169, 387-392.10.1016/j.snb.2012.05.031
  11. [11] Chu, B.H., Lo, C.F., Nicolosi, J. et al. (2011). Hydrogen detection using platinum coated graphene grown on SiC. Sensors and Actuators B, 157, 500-503.10.1016/j.snb.2011.05.007
  12. [12] Cho, B., Yoon, J., Hahm, M.G. et al. (2014). Graphene- based gas sensor: Metal decoration effect and application to a flexible devices. Journal of Materials Chemistry C, 2, 5280-5285.10.1039/C4TC00510D
  13. [13] Chung, M.G., Kim, D.H., Lee, H.M. et al. (2012). Highly sensitive NO2 gas sensor based on ozone treated graphene. Sensors and Actuators B, 166-167, 172-176.10.1016/j.snb.2012.02.036
  14. [14] Schedin, F., Geim, A.K., Morozov, S.V. et al. (2007). Detection of individual gas molecules adsorbed on graphene. Nature Materials, 6 (9), 652-655.10.1038/nmat196717660825
  15. [15] Hernandez, Y., Nicolosi, V., Lotya, M. et al. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3, 563-568.10.1038/nnano.2008.21518772919
  16. [16] Nemade, K.R., Waghuley, S.A. (2013). Chemiresistive gas sensing by few-layered graphene. Journal of Electronic Materials, 42, 2857-2866.10.1007/s11664-013-2699-4
  17. [17] Kim, H.K., Mattevi, C., Kim, H.J. et al. (2013). Optoelectronic properties of graphene thin films deposited by Langmuir-Blodgett assembly. Nanoscale, 5, 12365-12374.10.1039/c3nr02907g24162721
  18. [18] Ko, G., Kim, H.-Y., Ahn, J., Park, Y.M., Lee, K.-Y., Kim, J. (2010). Graphene based nitrogen dioxide gas sensors. Current Applied Physics, 10, 1002-1004.10.1016/j.cap.2009.12.024
  19. [19] Kostiuk, D., Luby, S., Demydenko, M. et al. (2016). Few-layer graphene Langmuir-Schaefer nanofilms for H2 gas sensing. Procedia Engineering, 168, 243-246.10.1016/j.proeng.2016.11.172
  20. [20] Capone, S., Benkovicova, M., Forleo, A. et al. (2017). Palladium/γ-Fe2O3 nanoparticle mixtures for acetone and NO2 gas sensors. Sensors and Actuators B, 243, 895-903.10.1016/j.snb.2016.12.027
  21. [21] Jia, W., Tchoudakov, R., Narkis, M., Siegmann, A. (2005). Performance of expanded graphite and expanded milled graphite fillers in thermosetting resins. Polymer Composites, 26 (4), 526-533.10.1002/pc.20123
  22. [22] Chitu, L., Siffalovic, P., Majkova, E., Jergel, M., Luby, S. (2014). Method of the preparation of nanoparticle monolayers and multilayers. Slovak patent No. 288234. Bratislava: The Industrial Property Office of SR. (in Slovak)
  23. [23] Hoffmann, R. (2013). Small but strong lessons from chemistry for nanoscience. Angewandte Chemie, 52, 93-103.10.1002/anie.201206678
  24. [24] Hall, P.M. (1997). Resistance calculations for thin film rectangles. Thin Solid Films, 300, 256-264.10.1016/S0040-6090(96)09495-3
  25. [25] Afzal, A., Cioffi, N., Sabbatini, L., Torsi, L. (2012). NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives. Sensors and Actuators B, 171-172, 25-42.10.1016/j.snb.2012.05.026
  26. [26] Pearce, R., Iakimov, T., Andersson, M., Hultman, L., Lloyd Spetz, A., Yakimova, R. (2011). Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection. Sensors and Actuators B, 155, 451-455.10.1016/j.snb.2010.12.046
  27. [27] Phan, D.-T., Chung, G.-S. (2014). A novel Pd nanocube-graphene hydride for hydrogen detection. Sensors and Actuators B, 199, 354-360.10.1016/j.snb.2014.04.013
  28. [28] Yi, J., Kim, S.H., Lee, W.W. et al. (2015). Graphene meshes decorated with paladium nanoparticles for hydrogen detection. Journal of Physics D: Applied Physics, 48, 475103.10.1088/0022-3727/48/47/475103
  29. [29] Ménini, P., Parret, F., Guerrero, M. et al. (2004). CO response of a nanostructured SnO2 gas sensor doped with palladium and platinum. Sensors and Actuators B, 103, 111-114.10.1016/j.snb.2004.04.103
  30. [30] Biswal, R.C. (2011). Pure and Pt-loaded γ-iron oxide as sensor for detection of sub ppm level of acetone. Sensors and Actuators B, 157, 183-188.10.1016/j.snb.2011.03.047
  31. [31] Wetchakun, K., Samerjai, T., Tamaekong, N. et al. (2011). Semiconducting metal oxides as sensors for environmentally hazardous gases. Sensors and Actuators B, 160, 580-591.10.1016/j.snb.2011.08.032
  32. [32] Dai, J.-F., Wang, G.-J., Ma, L., Wu, C.-K. (2015). Surface properties of graphene: Relationship to graphene-polymer composites. Reviews on Advanced Materials Science, 40, 60-71.
  33. [33] Lian, P., Zhu, X., Liang, S. et al. (2010) Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochimica Acta, 55, 3909-3914.10.1016/j.electacta.2010.02.025
Language: English
Page range: 64 - 69
Submitted on: Jan 28, 2019
|
Accepted on: Apr 12, 2019
|
Published on: May 2, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2019 Dmytro Kostiuk, Stefan Luby, Peter Siffalovic, Monika Benkovicova, Jan Ivanco, Matej Jergel, Eva Majkova, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.