Have a personal or library account? Click to login
Optimization Paradigm in the Signal Recovery after Compressive Sensing Cover

Optimization Paradigm in the Signal Recovery after Compressive Sensing

Open Access
|Feb 2019

References

  1. [1] Daponte, P., Vito, L., Rapuano, S., Tudosa, I. (2014). Challenges for aerospace measurement systems: Acquisition of wideband radio frequency using Analog-to-Information converters. In IEEE Metrology for Aerospace (MetroAeroSpace). IEEE, 377-382.10.1109/MetroAeroSpace.2014.6865953
  2. [2] Pinheiro, E.C., Postolache, O.A., Girao, P.S. (2010). Implementation of compressed sensing in telecardiology sensor networks. International Journal of Telemedicine and Applications, 2010, 127639.10.1155/2010/127639
  3. [3] Qaisar, S., Bilal, R.M., Iqbal, W., Naureen, M., Lee, S. (2013). Compressive sensing: From theory to applications, a survey. Journal of Communications and Networks, 15 (5), 443-456.10.1109/JCN.2013.000083
  4. [4] Boche, H., Calderbank, R., Kuttyniok, G., Vybíral, J. (2015). Compressed Sensing and its Applications. Springer.10.1007/978-3-319-16042-9
  5. [5] Slavik, Z., Ihle, M. (2014). Compressive sensing hardware for analog to information converters. In 8th Karlsruhe Workshop on Software Radios, 136-144.
  6. [6] Candés, E.J., Becker, S. (2013). Compressive sensing: Principles and hardware implementations. In Proceedings of the ESSCIRC. IEEE, 22-24.10.1109/ESSCIRC.2013.6649062
  7. [7] Faktor, T., Michaeli, T., Eldar, Y.C. (2010). Nonlinear and nonideal sampling revisited. IEEE Signal Processing Letters, 17 (2), 205-208.10.1109/LSP.2009.2036387
  8. [8] Xu, D., Tongret, R., Zheng, Y.F., Ewing, R.L. (2010). Wavelet modulated pulse for compressive sensing in sar. In Proceedings of the IEEE 2010 National Aerospace and Electronics Conference (NAECON). IEEE, 197-202.10.1109/NAECON.2010.5712945
  9. [9] Maleh, R., Fudge, R., Member, G.L., Boyle, F.A., Pace, P.E. (2012). Analog-to-information and the Nyquist folding receiver. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2 (3), 564-577.10.1109/JETCAS.2012.2223611
  10. [10] Yu, Z., Hoyos, S. (2009). Digitally assisted analog compressive sensing. In IEEE Dallas Circuits and Systems Workshop (DCAS). IEEE, 1-4.10.1109/DCAS.2009.5505732
  11. [11] Barkam, E., Biham, E., Keller, N. (2008). Instant ciphertext-only cryptanalysis of GSM encrypted communication. Journal of Cryptology, 21 (3), 392-429.10.1007/s00145-007-9001-y
  12. [12] Liu, W., Huang, Z., Wang, X., Sun, W.C. (2017). Design of a single channel modulated wideband converter for wideband spectrum sensing: Theory, architecture and hardware implementation. Sensors, 17 (5), 1035.10.3390/s17051035546964028471410
  13. [13] Davenport, M.A., Duarte, M.F., Eldar, Y.C., Kutyniok, G. (2012). Introduction to compressed sensing. In Compressed Sensing: Theory and Application. Cambridge University Press, 1-64.10.1017/CBO9780511794308.002
  14. [14] Press, W., Teukolsky, S., Vetterling, W., Flannery, B. (2007). Numerical Recipes: The Art of Scientific Computing, Third Edition. Cambridge University Press, 386.
  15. [15] Andráš, I., Dolinský, P., Michaeli, L., Šaliga, J., (2018). Sparse signal acquisition via compressed sensing and principal component analysis. Measurement Science Review, 18 (5), 175-182.10.1515/msr-2018-0025
  16. [16] Duarte, M.F., Eldar, Y.C. (2011). Structured compressed sensing: From theory to applications. IEEE Transactions on Signal Processing, 59 (9), 4053-4085.10.1109/TSP.2011.2161982
  17. [17] Tropp, J.A., Laska, J.N., Duarte, M.F., Romberg, J.K., Baraniuk, R.G. (2010). Beyond Nyquist: Efficient sampling of sparse bandlimited signals. IEEE Transactions on Information Theory, 56 (1), 520-544.10.1109/TIT.2009.2034811
  18. [18] Storn, R.M., Lampinen, J.A. (2005). Differential Evolution: A Practical Approach to Global Optimization. Springer.10.1007/978-3-540-39930-8_6
  19. [19] Michaeli, L., Šaliga, J., Godla, M., Lipták, J., Kollár, I. (2014). Measurement of distorted exponential signal components using maximum likelihood estimation. Measurement, 58, 503-510.10.1016/j.measurement.2014.09.024
  20. [20] Dolinsky, P., Andraš, I., Michaeli, L., Grimaldi, D. (2018). Model for generating simple synthetic ECG signals. Acta Electrotechnica et Informatica, 18 (3), 3-8.10.15546/aeei-2018-0019
  21. [21] Li, S., Xu, L.D., Wang, X. (2013). A continuous biomedical signal acquisition system based on compressed sensing in body sensor networks. IEEE Transactions on Industrial Informatics, 9 (3), 1764-1771.10.1109/TII.2013.2245334
  22. [22] ElProCus. PIR sensor – basics & applications. https://www.elprocus.com/pir-sensor-basics-applications/
  23. [23] PhysioNet. PhysioBank databases. https://physionet.org/physiobank/database/
  24. [24] Silvan Chip Electronics Tech. Co., Ltd. BISS0001 PIR controller.http://www.adrirobot.it/datasheet/speciali/pdf/BISS0001.pdf.
  25. [25] Candes, E., Romberg, J. (2005). Practical signal recovery from random projections. In Wavelet Applications in Signal and Image Processing XI. Proceedings of the SPIE 5914.10.1117/12.600722
Language: English
Page range: 35 - 42
Submitted on: May 25, 2018
|
Accepted on: Jan 24, 2019
|
Published on: Feb 23, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2019 Linus Michaeli, Ján Šaliga, Pavol Dolinský, Imrich Andráš, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.