Have a personal or library account? Click to login
Diagnosis of the Accuracy of the Vehicle Scale Using Neural Network Cover

Diagnosis of the Accuracy of the Vehicle Scale Using Neural Network

Open Access
|Feb 2019

References

  1. [1] Birch, J. (2003). Benefit of legal metrology for the economy and society. A study for the International Committee of Legal Metrology.
  2. [2] International Organization of Legal Metrology. (2010). Alphabetical list of terms defined in OIML Recommendations and Documents. OIML G 18.
  3. [3] Zeier, M., Allal, D., Judaschke, R. (2011). Guidelines on the evaluation of vector network analysers (VNA). EURAMET Calibration Guide No. 12. Braunschweig, Germany: EURAMET e.V.
  4. [4] EURAMET Technical Committee for Mass and Related Quantities. (2015). Guidelines on the Calibration of Non-Automatic Weighing Instruments. EURAMET Calibration Guide No. 18. Version 4.0 (11/2015). Braunschweig, Germany: EURAMET e.V.
  5. [5] European Cooperation in Legal Metrology. (2015). Software guide. (Measuring instruments directive 2014/32/EU1). WELMEC 7.2.
  6. [6] European Cooperation in Legal Metrology. (2015). Directive 2009/23/EC: Common application. Non-automatic weighing instruments. WELMEC 2, Iss. 6.
  7. [7] Joint Committee for Guides in Metrology (JCGM). (2008). Evaluation of measurement data – Guide to the expression of uncertainty in measurement. JCGM 100:2008.
  8. [8] Joint Committee for Guides in Metrology (JCGM). (2011). Evaluation of measurement data - Supplement 2 to the “Guide to the expression of uncertainty in measurement” - Extension to any number of output quantities. JCGM 102:2011.
  9. [9] Joint Committee for Guides in Metrology (JCGM). (2008). Evaluation of measurement data - An introduction to the “Guide to the expression of uncertainty in measurement” and related documents. JCGM 100:2008.
  10. [10] Joint Committee for Guides in Metrology (JCGM). (2012). Evaluation of measurement data - The role of measurement uncertainty in conformity assessment. JCGM 106:2012.
  11. [11] Witkovský, V., Wimmer, G., Ďuriš, S. (2015). On statistical methods and reference confidence intervals in interlaboratory comparisons for temperature. Inetrnational Journal of Thermophysiscs, 36 (8), 2150-2171.10.1007/s10765-015-1917-0
  12. [12] Palenčár, R., Sopkuliak, P., Palenčár, J., Ďuriš, S., Suroviak, E., Halaj, M. (2017). Application of Monte Carlo Method for evaluation of uncertainties of ITS-90 by Standard Platinum Resistance Thermometer. Measurement Science Review, 17 (3), 108-116.10.1515/msr-2017-0014
  13. [13] Palenčár, R., Wimmer, G., Halaj, M. (2002). Determination of the uncertainties and covariances in the calibration of the set of weights. Measurement Science Review, 2 (1), 9-20.
  14. [14] Charvátová, H., Janáčová, D., Fialka, M., Kolomazník, K. (2010). Mass analysis of the components separated from printed circuit boards. Acta Montanistica Slovaca, 15 (1), 58-61.
  15. [15] Rojas, R. (1996). Neural Networks: A Systematic Introduction. Springer.10.1007/978-3-642-61068-4
  16. [16] Haikyn, S. (2008). Neural Networks and Learning Machines, (3rd ed.). Pearson.
  17. [17] Sutkens, J.A.K., Vandewalle J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9, 293-300.10.1023/A:1018628609742
  18. [18] Huang, G., Song, S., Wu, C., You, K. (2012). Robust support vector regression for uncertain input and output data. IEEE Transactions on Neural Networks and Learning Systems, 23, 1690-1700.10.1109/TNNLS.2012.2212456
  19. [19] Vapnik, V. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10, 988-999.10.1109/72.788640
  20. [20] Nyulászi, L., Andoga, R., Butka, P., Gašpar, V. (2016). Comparison of experimental identification methods using measured data from a turbojet engine. In IEEE 14th International Symposium on Applied Machine Intelligence and Informatics (SAMI). IEEE, 23-37.10.1109/SAMI.2016.7422976
  21. [21] Tetko, I.V., Livingstone, D.J., Luik, A.I. (1995). Neural network studies. 1. Comparison of overfitting and overtraining. Journal of Chemical Information and Computer Sciences, 35, 826-833.10.1021/ci00027a006
  22. [22] Chicco, D. (2017). Ten quick tips for machine learning in computational biology. BioData Mining, 10 (35).10.1186/s13040-017-0155-3
  23. [23] Rojas, R. (1996). A short proof of the posterior probability property of classifier neural networks. Neural Computation, 8 (1), 41-43.10.1162/neco.1996.8.1.41
  24. [24] Møller, M.F. (1991). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6, 525-533.10.1016/S0893-6080(05)80056-5
  25. [25] Congalton, G.C. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37 (1), 35-46.10.1016/0034-4257(91)90048-B
  26. [26] Dovica, M., Buša, J., Palenčár, R., Ďuriš, S., Šooš, Ľ., Vrba, I., Kelemenová, T., Škovránek, T. (2013). Comparison of methods for analysis of deviations from roundness. Measurement Techniques, 56 (9), 1021-1025.10.1007/s11018-013-0323-x
Language: English
Page range: 14 - 19
Submitted on: May 28, 2018
|
Accepted on: Jan 21, 2019
|
Published on: Feb 23, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2019 Tomáš Kliment, Jaromír Markovič, Dušan Šmigura, Peter Adam, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.