Have a personal or library account? Click to login
Diagnostics of DC and Induction Motors Based on the Analysis of Acoustic Signals Cover

Diagnostics of DC and Induction Motors Based on the Analysis of Acoustic Signals

By: A. Glowacz  
Open Access
|Nov 2014

References

  1. [1] Aastroem, T. (2004). One hundred and one NDT and machine diagnostic methods for the prevention of losses in critical machinery. In 16th WCNDT 2004 : World Conference on NDT. CD-ROM Proceedings.
  2. [2] Gogola, D., Krafcik, A., Strbak, O., Frollo, I. (2013). Magnetic resonance imaging of surgical implants made from weak magnetic materials. Measurement Science Review, 13 (4), 165-168.10.2478/msr-2013-0026
  3. [3] Frollo, I., Andris, P., Gogola, D., Pribil, J., Valkovic, L., Szomolanyi, P. (2012). Magnetic field variations near weak magnetic materials studied by magnetic resonance imaging techniques. IEEE Transaction on Magnetics, 48 (8), 2334-2339.10.1109/TMAG.2012.2191298
  4. [4] Su, C., Fu, Y.Q. (2014). Reliability assessment for wind turbines considering the influence of wind speed using bayesian network. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 16 (1), 1-8.
  5. [5] Mamala, A., Sciezor, W. (2014). Evaluation of the effect of selected alloying elements on the mechanical and electrical aluminium properties. Archives of Metallurgy and Materials, 59 (1), 413-417.10.2478/amm-2014-0069
  6. [6] Tokarski, T., Wzorek, L., Dybiec, H. (2012). Microstructure and plasticity of hot deformed 5083 aluminum alloy produced by rapid solidification and hot extrusion. Archives of Metallurgy and Materials, 57 (4), 1253-1259.10.2478/v10172-012-0140-2
  7. [7] Smalcerz, A. (2013). Aspects of application of industrial robots in metallurgical processes. Archives of Metallurgy and Materials, 58 (1), 203-209.10.2478/v10172-012-0174-5
  8. [8] Kulesza, G., Panek, P., Zieba, P. (2013). Silicon solar cells efficiency improvement by the wet chemical texturization in the HF/HNO3/diluent solution. Archives of Metallurgy and Materials, 58 (1), 291-295.10.2478/v10172-012-0188-z
  9. [9] Glowacz, A., Glowacz, A., Glowacz, Z. (2014). Recognition of monochrome thermal images of synchronous motor with the application of quadtree decomposition and backpropagation neural network. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 16 (1), 92-96.
  10. [10] Glowacz, A., Glowacz, A., Korohoda, P. (2014). Recognition of monochrome thermal images of synchronous motor with the application of binarization and nearest mean classifier. Archives of Metallurgy and Materials, 59 (1), 31-34.10.2478/amm-2014-0005
  11. [11] Glowacz, A. (2014). Diagnostics of synchronous motor based on analysis of acoustic signals with the use of line spectral frequencies and K-nearest neighbor classifier. Archives of Acoustics, 39 (2), 189-194.
  12. [12] Glowacz, W. (2013). Diagnostics of induction motor based on spectral analysis of stator current with application of backpropagation neural network.Archives of Metallurgy and Materials, 58 (2), 559-562.10.2478/amm-2013-0037
  13. [13] Glowacz, Z., Kozik, J. (2013). Detection of synchronous motor inter-turn faults based on spectral analysis of park's vector. Archives of Metallurgy and Materials, 58 (1), 19-23.10.2478/v10172-012-0144-y
  14. [14] Zuber, N., Bajric, R., Sostakov, R. (2014). Gearbox faults identification using vibration signal analysis and artificial intelligence methods. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 16 (1), 61-65.
  15. [15] Bajric, R., Zuber, N., Sostakov, R. (2014) Relations between pulverizing process parameters and beater wheel mill vibration for predictive maintenance program setup. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 16 (1), 158-163.
  16. [16] MathWorks. (2014). MATLAB and SimuLink for Technical Computing. www.mathworks.com.
  17. [17] Chow, D., Abdulla, W.H. (2004). Speaker identification based on log area ratio and gaussian mixture models in narrow-band speech. In PRICAI 2004 : Trends in Artificial Intelligence. LNCS 3157. Springer, 901-908.10.1007/978-3-540-28633-2_95
  18. [18] Walendowski, P. (2008). Zastosowanie sieci neuronowych typu SVM do rozpoznawania mowy. Ph.D. Dissertation, Politechnika Wroclawska, Poland.
  19. [19] Kantoch, E., Smolen, M., Augustyniak, P., Kowalski, P. (2011). Wireless body area network system based on ECG and accelerometer pattern. In Computing in Cardiology 2011. IEEE, 245-248.
  20. [20] Kmiec, M., Glowacz, A., Dziech, A. (2012). Towards robust visual knife detection in images: Active appearance models initialised with shape-specific interest points. In Multimedia Communications, Services and Security : 5th International Conference. CCIS 287. Springer, 148-158.10.1007/978-3-642-30721-8_15
  21. [21] Dudek-Dyduch, E., Tadeusiewicz, R., Horzyk, A. (2009). Neural network adaptation process effectiveness dependent of constant training data availability. Neurocomputing, 72 (13-15), 3138-3149.10.1016/j.neucom.2009.03.017
  22. [22] Hachaj, T., Ogiela, M.R. (2013). Application of neural networks in detection of abnormal brain perfusion regions. Neurocomputing, 122, 33-42.10.1016/j.neucom.2013.04.030
  23. [23] Hachaj, T., Ogiela, M.R. (2011). CAD system for automatic analysis of CT perfusion maps. Opto- Electronics Review, 19 (1), 95-103.10.2478/s11772-010-0071-2
  24. [24] Ogiela, M.R., Tadeusiewicz, R., Trzupek, M. (2007). Graph-based semantic description in medical knowledge representation and 3D coronary vessels recognition. In Ubiquitous Intelligence and Computing. LNCS 4611. Springer, 1079-1088.10.1007/978-3-540-73549-6_105
  25. [25] Korohoda, P., Dabrowski, A. (2012). Wavelet-like decomposition stage with windowed filters defined for the Discrete Trigonometric Transforms (DTTs). Przeglad Elektrotechniczny, 88 (6), 30-35.
  26. [26] Skrodzka, E.B., Linde, B.B.J., Krupa, A. (2014). Effect of bass bar tension on modal parameters of a violin's top plate. Archives of Acoustics, 39 (1), 145-149.
  27. [27] Jaworek, J., Augustyniak, P. (2011). A cardiac telerehabilitation application for mobile devices. In Computing in Cardiology 2011. IEEE, 241-244.
  28. [28] Dytczak, M., Ginda, G. (2013). Is explicit processing of fuzzy direct influence evaluations in DEMATEL indispensable? Expert Systems with Applications, 40 (12), 5027-5032.10.1016/j.eswa.2013.02.034
  29. [29] Valis, D., Pietrucha-Urbanik, K. (2014). Utilization of diffusion processes and fuzzy logic for vulnerability assessment. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 16 (1), 48-55.
  30. [30] Valis, D., Zak, L., Pokora, O. (2014). Engine residual technical life estimation based on tribo data. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 16 (2), 203-210.
  31. [31] Huang, C.W., Chen, G.M., Yu, H., Bao, Y.Q., Zhao, L. (2013). Speech emotion recognition under white noise. Archives of Acoustics, 38 (4), 457-463.10.2478/aoa-2013-0054
  32. [32] Augustyniak, P., Smolen, M., Mikrut, Z., Kantoch, E. (2014). Seamless tracing of human behavior using complementary wearable and house-embedded sensors. Sensors, 14 (5), 7831-7856.10.3390/s140507831406299724787640
  33. [33] Batko, W., Przysucha, B. (2014). Statistical analysis of the equivalent noise level. Archives of Acoustics, 39 (2), 195-198.
  34. [34] Batko, W., Bal, R. (2014). Verification of the calculation assumptions applied to solutions of the acoustic measurements uncertainty. Archives of Acoustics, 39 (2), 199-202.
  35. [35] Knap, M., Falkus, J., Rozman, A., Konopka, K., Lamut, J. (2014). The prediction of hardenability using neural networks. Archives of Metallurgy and Materials, 59 (1), 133-136.10.2478/amm-2014-0021
  36. [36] Pleban, D. (2014). Definition and measure of the sound quality of the machine. Archives of Acoustics, 39 (1), 17-23.
  37. [37] Orzechowski, T., Izworski, A., Tadeusiewicz, R., Chmurzynska, K., Radkowski, P., Gatkowska, I. (2005). Processing of pathological changes in speech caused by dysarthria. In Intelligent Signal Processing and Communication Systems (ISPACS 2005). IEEE, 49-52.10.1109/ISPACS.2005.1595343
  38. [38] Olszewski, R., Trawinski, Z., Wojcik, J., Nowicki, A. (2012). Mathematical and ultrasonographic model of the left ventricle: In vitro studies. Archives of Acoustics, 37 (4), 583-595.10.2478/v10168-012-0068-6
  39. [39] Mazurkiewicz, D. (2014). Computer-aided maintenance and reliability management systems for conveyor belts. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 16 (3), 377-382.
  40. [40] Czopek, K. (2012). Cardiac activity based on acoustic signal properties. Acta physica polonica A, 121 (1A), A42-A45.10.12693/APhysPolA.121.A-42
  41. [41] Zdrojewski, A. (2007) Diagnostyka maszyny komutatorowej prądu stałego bazująca na analizie spektralnej pomiarowo dostępnych sygnałów. Ph.D. Dissertation. AGH University Science of Technology, Krakow, Poland. http://winntbg.bg.agh.edu.pl/rozprawy/9972/.
Language: English
Page range: 257 - 262
Submitted on: Feb 18, 2014
Accepted on: Sep 30, 2014
Published on: Nov 5, 2014
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2014 A. Glowacz, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.