Have a personal or library account? Click to login
Comparison of Molecular Iodine Spectral Properties at 514.7 and 532 nm Wavelengths Cover

Comparison of Molecular Iodine Spectral Properties at 514.7 and 532 nm Wavelengths

Open Access
|Aug 2014

References

  1. [1] Mironov, A.V., Privalov, V.E., Savelev, S.K. (1997). Complete calculated atlas of the absorption spectrum of iodine-127 (B-X system of bands) and complex of programs for the tabulation of iodine lines. Optics and Spectroscopy, 82 (3), 332-333.
  2. [2] Salami, H., Ross, A.J. (2005). A molecular iodine atlas in ascii format. Journal of Molecular Spectroscopy, 233 (1), 157-159.10.1016/j.jms.2005.06.002
  3. [3] Simmons, J.D., Hougen, J.T. (1977). Atlas of I2 spectrum from 19 000 to 18 000 Cm-1. Journal of Research of the National Bureau of Standards, Section A : Physics and Chemistry, 81 (1), 25-80.10.6028/jres.081A.006
  4. [4] Cheng, W.Y., Chen, L.S., Yoon, T.H., Hall, J.L., Ye, J. (2002). Sub-Doppler molecular-iodine transitions near the dissociation limit (523-498 nm). Optics Letters, 27 (8), 571-573.10.1364/OL.27.000571
  5. [5] Quinn, T.J. (2003). Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001). Metrologia, 40 (2), 103-133.10.1088/0026-1394/40/2/316
  6. [6] Balhorn, R., Lebowsky, F., Kunzmann, H. (1972). Frequency stabilization of internal-mirror helium-neon lasers. Applied Optics, 11 (4), 742-744.10.1364/AO.11.000742
  7. [7] Nevsky, A.Y., Holzwarth, R., Reichert, et al. (2001). Frequency comparison and absolute frequency measurement of I-2-stabilized lasers at 532 nm. Optics Communications, 192 (3-6), 263-272.10.1016/S0030-4018(01)01190-7
  8. [8] Petru, F., Popela, B., Vesela, Z. (1993). Design and performance of compact iodine stabilized He-Ne lasers at lambda=633 nm with a short optical-resonator. Measurement Science & Technology, 4 (4), 506-512.10.1088/0957-0233/4/4/012
  9. [9] Sevcik, R., Guttenova, J. (2007). Primary length standard adjustment. In 15th Czech-Polish-Slovak Conference on Wave and Quantum Aspects of Contemporary Optics, Proc. SPIE 6609.
  10. [10] Galzerano, G., Bava, E., Bisi, M., Bertinetto, F., Svelto, C. (1999). Frequency stabilization of frequency-doubled Nd : YAG lasers at 532 nm by frequency modulation spectroscopy technique. IEEE Transactions on Instrumentation and Measurement, 48 (2), 540-543.10.1109/19.769653
  11. [11] Nyholm, K., Merimaa, M., Ahola, T., Lassila, A. (2003). Frequency stabilization of a diode-pumped Nd:Yag laser at 532 nm to iodine by using thirdharmonic technique. IEEE Transactions on Instrumentation and Measurement, 52 (2), 284-287.10.1109/TIM.2003.811679
  12. [12] Bartl, J., Guttenova, J., Jacko, V., Sevcik, R. (2007). Circuits for optical frequency stabilization of metrological lasers. In Measurement 2007 : 6th International Conference on Measurement. Bratislava : Institute of Measurement Science SAS, 131-134.
  13. [13] Hrabina, J., Petru, F., Jedlicka, P., Cip, O., Lazar, J. (2007). Purity of iodine cells and optical frequency shift of iodine-stabilized He-Ne lasers. Optoelectronics and Advanced Materials-Rapid Communications, 1 (5), 202-206.
  14. [14] Ciddor, P.E., Duffy, R.M. (1983). Two-mode frequency-stabilized He-Ne (633 nm) lasers : Studies of short- and long-term stability. Journal of Physics E : Scientific Instruments, 16 (12), 1223-1227.
  15. [15] Rovera, G.D., Ducos, F., Zondy, J.J., Acef, O., Wallerand, J.P., Knight, J.C., Russell, P.S. (2002). Absolute frequency measurement of an I-2 stabilized Nd : YAG optical frequency standard. Measurement Science & Technology, 13 (6), 918-922.10.1088/0957-0233/13/6/313
  16. [16] Lazar, J., Hrabina, J., Jedlicka, P., Cip, O. (2009). Absolute frequency shifts of iodine cells for laser stabilization. Metrologia, 46 (5), 450-456.10.1088/0026-1394/46/5/008
  17. [17] Hrabina, J., Lazar, J., Hola, M., Cip, O. (2013). Frequency noise properties of lasers for interferometry in nanometrology. Sensors, 13 (2), 2206-2219. 10.3390/s130202206364941523435049
  18. [18] Lance, A.L., Seal, W.D., Labaar, F. (1982). Phase noise measurement systems. ISA Transactions, 21 (4), 37-44.
  19. [19] Hrabina, J., Lazar, J., Hola, M., Cip, O. (2013). Investigation of short-term amplitude and frequency fluctuations of lasers for interferometry. Measurement Science Review, 13 (2), 63-69.10.2478/msr-2013-0014
  20. [20] Rerucha, S., Buchta, Z., Sarbort, M., Lazar, J., Cip, O. (2012). Detection of interference phase by digital computation of quadrature signals in homodyne laser interferometry. Sensors, 12 (10), 14095-14112.10.3390/s121014095354560923202038
  21. [21] Smid, R., Cip, O., Lazar, J. (2008). Precise length etalon controlled by stabilized frequency comb. Measurement Science Review, 8 (5), 114-117.
  22. [22] Hodges, J.T., Layer, H.P., Miller, W.W., Scace, G.E. (2004). Frequency-stabilized single-mode cavity ringdown apparatus for high-resolution absorption spectroscopy. Review of Scientific Instruments, 75 (4), 849-863.10.1063/1.1666984
  23. [23] Lazar, J., Hola, M., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2012). Refractive index compensation in over-determined interferometric systems. Sensors, 12 (10), 14084-14094.10.3390/s121014084354560823202037
  24. [24] Birch, K.P., Downs, M.J. (1994). Correction to the updated edlen equation for the refractive-index of air. Metrologia, 31 (4), 315-316.10.1088/0026-1394/31/4/006
  25. [25] Lazar, J., Hola, M., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2012). Displacement interferometry with stabilization of wavelength in air. Optics Express, 20 (25), 27830-27837.10.1364/OE.20.02783023262728
  26. [26] Lazar, J., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2011). Standing wave interferometer with stabilization of wavelength on air. tm-Technisches Messen, 78 (11), 484-488.10.1524/teme.2011.0201
  27. [27] Zhang, J., Lu, Z.H., Menegozzi, B., Wang, L.J. (2006). Application of frequency combs in the measurement of the refractive index of air. Review of Scientific Instruments, 77 (8).10.1063/1.2239036
  28. [28] Hrabina, J., Lazar, J., Klapetek, P., Cip, O. (2011). Multidimensional interferometric tool for the local probe microscopy nanometrology. Measurement Science & Technology, 22 (9).10.1088/0957-0233/22/9/094030
  29. [29] Cao, H.J., Zang, E.J., Zhao, K., Zhang, X.B., Wu, Y.X., Shen, N.C. (1998). Frequency stabilization of a Nd:YAG laser to Doppler-broadened lines of iodine near 532 nm. In Conference on Precision Electromagnetic Measurements Digest, 6-10 July 1998. IEEE, 183-184.10.1117/12.344142
  30. [30] Lazar, J., Hrabina, J., Sery, M., Klapetek, P., Cip, O. (2012). Multiaxis interferometric displacement measurement for local probe microscopy. Central European Journal of Physics, 10 (1), 225-231.10.2478/s11534-011-0093-5
  31. [31] du Burck, F., Daussy, C., Amy-Klein, A., Goncharov, A.N., Lopez, O., Chardonnet, C., Wallerand, J.P. (2005). Frequency measurement of an Ar+ laser stabilized on narrow lines of molecular iodine at 501.7 nm. IEEE Transactions on Instrumentation and Measurement, 54 (2), 754-758.
  32. [32] Wallerand, J.P., Robertsson, L., Ma, L.S., Zucco, M. (2006). Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequencydoubled Yb-doped fibre laser. Metrologia, 43 (3), 294-298.
  33. [33] Osellame, R., Della Valle, G., Chiodo, N., Taccheo, S., Laporta, P., Svelto, O., Cerullo, G. (2008). Lasing in femtosecond laser written optical waveguides. Applied Physics A : Materials Science & Processing, 93 (1), 17-26.10.1007/s00339-008-4644-6
  34. [34] Chiodo, N., Du Burck, F., Hrabina, J., Candela, Y., Wallerand, J.P., Acef, O. (2013). CW frequency doubling of 1029 nm radiation using single pass bulk and waveguide PPLN crystals. Optics Communications, 311, 239-244.10.1016/j.optcom.2013.08.020
  35. [35] Chiodo, N., Du-Burck, F., Hrabina, J., Lours, M., Chea, E., Acef, O. (2014). Optical phase locking of two infrared continuous wave lasers separated by 100 THz. Optics Letters, 39 (10), 2936-2939.10.1364/OL.39.00293624978241
  36. [36] Hrabina, J., Jedlicka, P., Lazar, J. (2008). Methods for measurement and verification of purity of iodine cells for laser frequency stabilization. Measurement Science Review, 8 (5), 118-121.10.2478/v10048-008-0025-8
  37. [37] Fang, H.M., Wang, S.C., Liu, L.C., Cheng, W.Y., Wu, K.Y., Shy, J.T. (2006). Measurement of hyperfine splitting of molecular iodine at 532 nm by doublepassed acousto optic modulator frequency shifter. Japanese Journal of Applied Physics, 45, 2776-2779.10.1143/JJAP.45.2776
  38. [38] Vigue, J., Broyer, M., Lehmann, J.C. (1981). Natural hyperfine and magnetic predissociation of the I2 B state. I. - Theory. Journal de Physique, 42 (7), 937-947.10.1051/jphys:01981004207093700
  39. [39] Vigue, J., Broyer, M., Lehmann, J.C. (1981). Natural hyperfine and magnetic predissociation of the I2 B state. II. - Experiments on natural and hyperfine predissociation. Journal de Physique, 42 (7), 949-959.10.1051/jphys:01981004207093700
  40. [40] Vigue, J., Broyer, M., Lehmann, J.C. (1981). Natural hyperfine and magnetic predissociation of the I2 B state. III. - Experiments on magnetic predissociation. Journal de Physique, 42 (7), 961-978.10.1051/jphys:01981004207093700
  41. [41] Pique, J.P., Bacis, R., Hartmann, F., Sadeghi, N., Churassy, S. (1983). Hyperfine predissociation in the B state of iodine investigated through lifetime measurements of individual hyperfine sublevels. Journal de Physique, 44 (3), 347-351. 10.1051/jphys:01983004403034700
Language: English
Page range: 213 - 218
Submitted on: Aug 27, 2013
Accepted on: Jul 25, 2014
Published on: Aug 23, 2014
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2014 J. Hrabina, O. Acef, F. du Burck, N. Chiodo, Y. Candela, M. Sarbort, M. Hola, J. Lazar, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.