Have a personal or library account? Click to login
Multiple Iterations of Bundle Adjustment for the Position Measurement of Fiber Tips on LAMOST Cover

Multiple Iterations of Bundle Adjustment for the Position Measurement of Fiber Tips on LAMOST

By: Mingchi Feng,  Yonggang Gu,  Yi Jin and  Chao Zhai  
Open Access
|Aug 2014

References

  1. [1] Gillingham, P.R. (1989). Lessons for new large telescopes from the AAT. Astrophysics and Space Science, 160 (1), 281-286.10.1007/BF00642783
  2. [2] Kent, S.M. (1994). Sloan digital sky survey. Astrophysics and Space Science, 217 (1), 27-30.10.1007/BF00990018
  3. [3] Xing, X.Z., Zhai, C., Du, H.S., Li, W.M., Hu, H.Z., Wang, R.F., Shi, D.X. (1998). Parallel controllable optical fiber positioning system for LAMOST. In Advanced Technology Optical / IR Telescopes VI, Proc. SPIE 3352, 839-849.
  4. [4] Edelstein, J., Poppett, C., Sirk, M., Besuner, R., Lafever, R., Allington-Smith, J.R., Murray, G.J. (2012). Optical fiber systems for the BigBOSS instrument. In Modern Technologies in Space-and Ground-Based Telescopes and Instrumentation II, Proc. SPIE 8450.10.1117/12.925196
  5. [5] Predmore, C.R. (2010). Bundle adjustment of multiposition measurements using the Mahalanobis distance. Precision Engineering, 34 (1), 113-123.10.1016/j.precisioneng.2009.05.003
  6. [6] Zhang, F.M., Qu, X.H. (2012). Fusion estimation of point sets from multiple stations of spherical coordinate instruments utilizing uncertainty estimation based on monte carlo. Measurement Science Review, 12 (2), 40-45.10.2478/v10048-012-0009-6
  7. [7] D’Amato, R., Caja, J., Maresca, P., Gómez, E. (2014). Use of coordinate measuring machine to measure angles by geometric characterization of perpendicular planes. Estimating uncertainty. Measurement, 47, 598-606.10.1016/j.measurement.2013.09.027
  8. [8] Shi, Y.Q., Sun, C.K., Wang, P., Wang, Z., Duan, H.X. (2011). High-speed measurement algorithm for the position of holes in a large plane. Optics and Lasers in Engineering, 50 (12), 1828-1835.
  9. [9] Feng, M.C., Jin, Y., Zhai, C. (2011). Embedded realtime strain measurement system based on improved automated grid method. Chinese Journal of Scientific Instrument, 32 (12), 2874-2880.
  10. [10] Janusek, D., Kania, M., Zaczek, R., Zavala-Fernandez, H., Zbiec, A., Opolski, G., Maniewski, R. (2011). Application of wavelet based denoising for T-wave alternans analysis in high resolution ECG maps. Measurement Science Review, 11 (6), 181-184.10.2478/v10048-011-0036-8
  11. [11] Liu, Z.G., Zhai, C., Hu, H.Z., Wang, J.P., Chu, J.R. (2011). Research on calibration method of LAMOST fiber robot. In Astronomical Adaptive Optics Systems and Applications IV, Proc. SPIE 8149.10.1117/12.892989
  12. [12] Wang, M.X., Zhao, Y.H., Luo, A. (2012). LAMOST fiber unit positional precision passive detection exploiting the technique of template matching. In Modern Technologies in Space- and Ground-Based : Telescopes and Instrumentation II, Proc. SPIE 8450.
  13. [13] Barone, S., Paoli, A., Razionale, A.V. (2013). Multiple alignments of range maps by active stereo imaging and global marker framing. Optics and Lasers in Engineering, 51 (2), 116-127.10.1016/j.optlaseng.2012.09.003
  14. [14] Guidi, G., Beraldin, J.A., Ciofi, S., Atzeni, C. (2003). Fusion of range camera and photogrammetry: A systematic procedure for improving 3-D models metric accuracy. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 33 (4), 667-676.10.1109/TSMCB.2003.81428218238216
  15. [15] Tao, C.V., Hu, Y. (2001). A comprehensive study of the rational function model for photogrammetric processing. Photogrammetric Engineering & Remote Sensing, 67 (12), 1347-1357.
  16. [16] Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A. (2000). Bundle adjustment-a modern synthesis. Vision Algorithms: Theory Practice, 1883, 298-372.10.1007/3-540-44480-7_21
  17. [17] Lourakis, M.I.A., Argyros, A.A. (2009). SBA: A software package for generic sparse bundle adjustment. ACM Transactions on Mathematical Software, 36 (1), 1-30.10.1145/1486525.1486527
  18. [18] Luhmann, T. (2010). Close range photogrammetry for industrial applications. ISPRS Journal of Photogrammetry and Remote Sensing, 65 (6), 558-569.10.1016/j.isprsjprs.2010.06.003
  19. [19] Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P. (2009). Generic and real-time structure from motion using local bundle adjustment. Image and Vision Computing, 27 (8), 1178-1193.10.1016/j.imavis.2008.11.006
  20. [20] Agarwal, S., Snavely, N., Seitz, S., Szeliski, R. (2010). Bundle adjustment in the large. In Computer Vision - ECCV 2010, LNCS 6312, 29-42.10.1007/978-3-642-15552-9_3
  21. [21] Ji, Z., Boutin, M., Aliaga, D.G. (2006). Robust bundle adjustment for structure from motion. In IEEE International Conference on Image Processing. IEEE, 2185-2188.
  22. [22] Marquardt, D. (1963). An algorithm for the leastsquares estimation of nonlinear parameters. SIAM Journal of Applied Mathematics, 11 (2), 431-441.10.1137/0111030
  23. [23] Zhang, Y.Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (11), 1330-1334.10.1109/34.888718
  24. [24] Tsai, M.J., Hung, C.C. (2005). Development of a highprecision surface metrology system using structured light projection. Measurement, 38 (3), 236-247.
  25. [25] Tsai, R.Y. (1987). A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the shelf TV cameras and lenses. IEEE Journal of Robotics and Automation, 3 (4), 323-344.10.1109/JRA.1987.1087109
  26. [26] Huang, J.J., Wang, Z., Gao, Z.H., Gao, J.M. (2011). A novel color coding method for structured light 3D measurement. In Videometrics, Range Imaging, and Applications XI, Proc. SPIE 8085.10.1117/12.889317
  27. [27] Weng, J., Cohen, P., Henriou, M. (1992). Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14 (10), 965-980.10.1109/34.159901
  28. [28] Hartley, R.I. (1997). In defense of the eight-point algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19 (6), 580-593.10.1109/34.601246
  29. [29] Menudet, J.F., Becker, J.M., Fournel, T., Mennessier, C. (2008). Plane-based camera self-calibration by metric rectification of images. Image and Vision Computing, 26 (7), 913-934.10.1016/j.imavis.2007.10.005
  30. [30] Debei, S., Aboudan, A., Colombatti, G., Pertile, M. (2012). Lutetia surface reconstruction and uncertainty analysis. Planetary and Space Science, 71 (1), 64-72.10.1016/j.pss.2012.07.013
  31. [31] Feng, M.C., Gu, Y.G., Zhai, C. (2013). Precise measurement of fibers position using bundle adjustment algorithm. In IEEE International Instrumentation and Measurement Technology Conference. IEEE, 576-580. 10.1109/I2MTC.2013.6555482
Language: English
Page range: 190 - 197
Submitted on: Nov 15, 2013
Accepted on: Jul 29, 2014
Published on: Aug 23, 2014
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2014 Mingchi Feng, Yonggang Gu, Yi Jin, Chao Zhai, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.