Have a personal or library account? Click to login
Parameter Estimation Algorithm for the Exponential Signal by the Enhanced DFT Approach Cover

Parameter Estimation Algorithm for the Exponential Signal by the Enhanced DFT Approach

By:
Open Access
|Jun 2014

References

  1. [1] Aboutanios, E. (2011). Estimating the parameters of sinusoids and decaying sinusoids in noise. IEEE Instrumentation & Measurement Magazine, 14 (2), 8-14.10.1109/MIM.2011.5735249
  2. [2] Aboutanios, E. (2010). Estimation of the frequency and decay factor of a decaying exponential in noise. IEEE Transactions on Signal Processing, 58 (2), 501-509.10.1109/TSP.2009.2031299
  3. [3] Duda, K., Zielinski, T.P. (2013). Efficacy of the frequency and damping estimation of a real-value sinusoid Part 44 in a series of tutorials on instrumentation and measurement. IEEE Instrumentation & Measurement Magazine, 16 (2), 48-58.10.1109/MIM.2013.6495682
  4. [4] Agrez, D. (2009). A frequency domain procedure for estimation of the exponentially damped sinusoids. In Instrumentation and Measurement Technology Conference, 5-7 May 2009. IEEE, 1321-1326.10.1109/IMTC.2009.5168660
  5. [5] Zieliński, T., Duda, K. (2011). Frequency and damping estimation methods-an overview. Metrology and Measurement Systems, 18 (4), 505-528.10.2478/v10178-011-0051-y
  6. [6] Bertocco, M., Offelli, C., Petri, D. (1994). Analysis of damped sinusoidal signals via a frequency-domain interpolation algorithm. IEEE Transactions on Instrumentation and Measurement, 43 (2), 245-250.10.1109/19.293428
  7. [7] Agrež, D. (2010). Estimation and tracking of the power quality disturbances in the frequency domain. Measurement Science Review, 10 (6), 189-194.10.2478/v10048-010-0032-4
  8. [8] Yoshida, I., Sugai, T., Tani, S., Motegi, M., Minamida, K., Hayakawa, H. (1981). Automation of internal friction measurement apparatus of inverted torsion pendulum type. Journal of Physics E: Scientific Instruments, 14 (10), 1201.
  9. [9] Wu, R.C., Chiang, C.T. (2010). Analysis of the exponential signal by the interpolated DFT algorithm. IEEE Transactions on Instrumentation and Measurement, 59 (12), 3306-3317.10.1109/TIM.2010.2047301
  10. [10] Agrez, D. (2002). Weighted multipoint interpolated DFT to improve amplitude estimation of multifrequency signal. IEEE Transactions on Instrumentation and Measurement, 51 (2), 287-292.10.1109/19.997826
  11. [11] Duda, K., Magalas, L.B., Majewski, M., Zielinski, T.P. (2011). DFT-based estimation of damped oscillation parameters in low-frequency mechanical spectroscopy. IEEE Transactions on Instrumentation and Measurement, 60 (11), 3608-3618.10.1109/TIM.2011.2113124
  12. [12] Diao, R., Meng, Q. (2013). An interpolation algorithm for discrete Fourier transforms of weighted damped sinusoidal signals. IEEE Transactions on Instrumentation and Measurement, 99, 1-9.
  13. [13] Duda, K. (2011). DFT interpolation algorithm for Kaiser-Bessel and Dolph-Chebyshev windows. IEEE Transactions on Instrumentation and Measurement, 60 (3), 784-790. 10.1109/TIM.2010.2046594
Language: English
Page range: 126 - 135
Submitted on: Apr 2, 2014
Accepted on: Jul 11, 2014
Published on: Jun 17, 2014
Published by: Slovak Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2014 Qian Wang, Xiao Yan, Kaiyu Qin, published by Slovak Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.