Have a personal or library account? Click to login
The Parallel Bayesian Toolbox for High-performance Bayesian Filtering in Metrology Cover

The Parallel Bayesian Toolbox for High-performance Bayesian Filtering in Metrology

By: E. Garcia and  T. Hausotte  
Open Access
|Jan 2014

References

  1. [1] Schwenke, H., Neuschaefer-Rube, U., Pfeifer, T., Kunzmann, H. (2002). Optical methods for dimensional metrology in production engineering. CIRP Annals - Manufacturing Technology, 51 (2), 685-699.10.1016/S0007-8506(07)61707-7
  2. [2] Estler, W.T., Edmundson, K.L., Peggs, G.N., Parker, D.H. (2002). Large-scale metrology - an update. CIRP Annals - Manufacturing Technology, 51 (2), 587-609.10.1016/S0007-8506(07)61702-8
  3. [3] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML. (2008). Evaluation of measurement data - Guide to the expression of uncertainty in measurement (GUM 1995 with minor corrections). JCGM 100:2008.
  4. [4] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML. (2008). Evaluation of measurement data - Supplement 1 to the ‘Guide to the expression of uncertainty in measurement’ - Propagation of distributions using a Monte Carlo method. JCGM 101:2008.
  5. [5] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML. (2008). International vocabulary of metrology - Basic and general concepts and associated terms (VIM). JCGM 200:2008.
  6. [6] Cappé, O., Moulines, E., Ryden, T. (2005). Inference in Hidden Markov Models. Springer.10.1007/0-387-28982-8
  7. [7] Fraser, A.M. (2008). Hidden Markov Models and Dynamical Systems (1st ed.). Society for Industrial and Applied Mathematics.
  8. [8] Doucet, A., de Freitas, N., Gordon, N. (2001).Sequential Monte Carlo Methods in Practice.Springer.10.1007/978-1-4757-3437-9
  9. [9] Douc, R., Cappé, O., Moulines, E. (2005). Comparison of resampling schemes for particle filtering. In Image and Signal Processing and Analysis : 4th International Symposium (ISPA 2005), 15-17 September 2005.IEEE, 64-69.10.1109/ISPA.2005.195385
  10. [10] Daum, F., Huang, J. (2003). Curse of dimensionality and particle filters. In Aerospace Conference, 8-15March 2003. IEEE, Vol. 4, 4-1979-4-1993.10.1109/AERO.2003.1235126
  11. [11] Google Project Hosting. Parallel Bayesian Toolbox. http://code.google.com/p/parallel-bayesian-toolbox/.
  12. [12] Sanderson, C. (2010). Armadillo: An open source C++ linear algebra library for fast prototyping and computationally intensive experiments. Technical Report. NICTA.
  13. [13] CMake home page. http://www.cmake.org/.
  14. [14] Bar-Shalom, Y., Li, X.-R., Kirubarajan, T. (2001).Estimation with Applications to Tracking and Navigation : Theory Algorithms and Software. Wiley - Blackwell.
  15. [15] Rosenband, D.L., Rosenband, T. (2009). A design case study: CPU vs. GPGPU vs. FPGA. In Formal Methods and Models for Co-Design : 7th IEEE/ACM International Conference (MEMOCODE’09), 13-15July 2009. IEEE, 69-72.
  16. [16] Garcia, E., Hausotte, T., Amthor, A. (2013). Bayes filter for dynamic coordinate measurements - Accuracy improvment, data fusion and measurement uncertainty evaluation. Measurement, 46 (9), 3737-3744.10.1016/j.measurement.2013.04.001
  17. [17] Garcia, E., Zschiegner, N., Hausotte, T. (2013).Parallel high-performance computing of Bayes estimation for signal processing and metrology. In Computing, Management and Telecommunications (ComManTel), 21-24 January 2013. IEEE, 212-218.10.1109/ComManTel.2013.6482393
  18. [18] Welch, G., Bishop, G. The Kalman Filter homepage. http://www.cs.unc.edu/~welch/kalman.
  19. [19] Identification and Decision Making Research Group, University of West Bohemia. Nonlinear Estimation Framework homepage. http://nft.kky.zcu.cz/nef.
  20. [20] Cambridge University. Sequential Monte Carlo methods (Particle filtering) homepage. http://wwwsigproc.eng.cam.ac.uk/smc/software.html.
  21. [21] The Orocos Project. The Bayesian Filtering Library. http://www.orocos.org/bfl.
  22. [22] BiiPS Project. BiiPS (Bayesian inference with interacting Particle Systems) homepage. http://alea.bordeaux.inria.fr/biips.
  23. [23] Michael Stevens. Bayes++. Open source Bayesian Filtering classes. http://bayesclasses.sourceforge.net.
Language: English
Page range: 315 - 321
Published on: Jan 14, 2014
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2014 E. Garcia, T. Hausotte, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.

Volume 13 (2013): Issue 6 (December 2013)