Have a personal or library account? Click to login
Neural Network Based Real-time Correction of Transducer Dynamic Errors Cover

Neural Network Based Real-time Correction of Transducer Dynamic Errors

By: J. Roj  
Open Access
|Jan 2014

References

  1. [1] Mukhopadhyay, S.C., Gupta, G.S. (2008). Smart Sensors and Sensing Technology. Lecture Notes in Electrical Engineering, Volume 20. Springer.10.1007/978-3-540-79590-2
  2. [2] Frank, R. (2000). Understanding Smart Sensors. Second edition. Artech House Inc.10.1088/0957-0233/11/12/711
  3. [3] Morawski, R.Z. (1994). Unified approach to measurand reconstruction. IEEE Transactions on Instrumentation & Measurement, 43 (2), 226-231.10.1109/19.293425
  4. [4] Roj, J. (2013). Metrological properties of RBF and MLP neural networks used for static errors correction in a sampling transducer. Przegląd Elektrotechniczny, 89 (1a), 84-87. (in Polish)
  5. [5] Jakubiec, J., Makowski, P., Roj, J. (2009). Error model application in neural reconstruction of nonlinear sensor input signal. IEEE Transactions on Instrumentation and Measurement, 58 (3), 649-656.10.1109/TIM.2008.2005076
  6. [6] Roj, J. (2013). Neural Reconstruction of Measurement Signals. Gliwice, Wydawnictwo Politechniki Śląskiej. (in Polish)
  7. [7] Haykin, S. (2008). Neural Networks: A Comprehensive Foundation. Third edition. Prentice Hall.
  8. [8] Gupta, M., Homma, N., Jin, L. (2003) Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory. John Wiley & Sons.10.1002/0471427950
  9. [9] Bishop, Ch.M. (1996). Neural Networks for Pattern Recognition. Oxford University Press.
  10. [10] Jackowska-Strumiłło, L. (2001). Dynamic temperature error correction by the use of artificial naural networks. In TEMPMEKO 2001 : 8th International Symposium on Temperature and Thermal Measurements in Industry and Science, 19-21 June2001. Berlin: VDE-Verlag, 1097-1102.
  11. [11] Wu, D., Huang, S., Zhao, W., Xin, J. (2009). Infrared thermometer sensor dynamic error compensation using Hammerstein neural network. Sensors and Actuators A: Physical, 149 (1), 152-158.10.1016/j.sna.2008.11.005
  12. [12] Hornik, K., Stinchcombe, M., White, H. (1989).Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359-366.10.1016/0893-6080(89)90020-8
  13. [13] Feldkamp, L.A., Puskorius, G.V. (1998). A signal processing framework based on dynamic neural networks with application to problems in adaptation, filtering, and classification. Proceedings of the IEEE, 86 (11), 2259-2277.10.1109/5.726790
  14. [14] Park, J., Sandberg, I.W. (1991). Universal approximation using radial-basis-function networks.Neural Computation, 3 (2), 246-257.10.1162/neco.1991.3.2.246
  15. [15] Singh, A.P., Kamal, T.S., Kumar, S. (2006).Development of a virtual linearizer for correcting transducer static nonlinearity. ISA Transactions, 45 (3), 319-328.10.1016/S0019-0578(07)60215-8
  16. [16] Patra, J.C., Chakraborty, G., Meher, P.K. (2008).Neural-network-based robust linearization and compensation technique for sensors under nonlinear environmental influences. IEEE Transactions on Circuits and Systems I: Regular Papers, 55 (5), 1316-1327.10.1109/TCSI.2008.916617
  17. [17] Wang, Y.-X, Li, Z.-H., Zhang, T.-H. (2010). Research of ultrasonic flow measurement and temperature compensation system based on neural network. In International Conference on Artificial Intelligence and Computational Intelligence (AICI 2010), 23-24October 2010. IEEE, Vol. 1, 268-271.
  18. [18] Jackowska-Strumiłło, L., Urbański, M. (2001).Linearisation of thermistor characteristic by the use of artificial naural networks. In TEMPMEKO 2001 : 8th International Symposium on Temperature and Thermal Measurements in Industry and Science, 19-21June 2001. Berlin: VDE-Verlag, 1035-1040.
  19. [19] Massicotte, D., Legendre, S., Barwicz, A. (1998).Neural-network-based method of calibration and measurand reconstruction for a high-pressure measuring system. IEEE Transactions on Instrumentation and Measurement, 47 (2), 362-370.10.1109/19.744175
  20. [20] Morawski, R.Z., Miękina, A., Wiśniewski, M., Barwicz, A. (2002). Neural network based calibration of a mini-spectrophotometer. In Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (IMTC 2002). IEEE, Vol. 2, 1083-1086.
  21. [21] Rath, S.K., Patra, J.C., Kot, A.C. (2000). An intelligent pressure sensor with self-calibration capability using artificial neural networks. In IEEE International Conference on Systems, Man, and Cybernetics. IEEE, Vol. 4, 2563-2568.
  22. [22] Nabielec, J. (1999). An outlook on the DSP dynamic error blind correction of the analog part of the measurement channel. In Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (IMTC ’99). IEEE, Vol. 2, 709-712.
  23. [23] Morawski, R.Z. (2007). On teaching measurement applications of digital signal processing. Measurement, 40 (2), 213-223.10.1016/j.measurement.2006.06.015
  24. [24] Wu, J., Zhang, Z., Dong, G., Wang, W. (2011). Realtime correction for sensor's dynamic error based on DSP. In IEEE Instrumentation and Measurement Technology Conference (I2MTC), 10-12 May 2011.IEEE, 1-6.
  25. [25] Wu, J., Zhang, Z., Wang, W. (2012). FPGA implementation of high speed parallel correction for sensor's dynamic error. Chinese Journal of Sensors and Actuators, 25 (1), 67-71.
  26. [26] Jafaripanah, M., Al-Hashimi, B.M, White, N.M. (2005). Application of analog adaptive filters for dynamic sensor compensation. IEEE Transaction On Instrumentation and Measurement, 54 (1), 245-251.10.1109/TIM.2004.839763
  27. [27] Jafaripanah, M., Al-Hashimi, B.M, White, N.M. (2003). Load cell response correction using analog adaptive techniques. In International Symposium on Circuits and Systems (ISCAS2003), 25-28 May 2003.IEEE, IV-752-IV-755.10.1109/ISCAS.2003.1206283
  28. [28] Bahar, H.B., Safari, E., Ghazijahani, H.A. (2010).Artifcial neural networks based dynamicweight estimation with optical arrangement. Transactions D: Computer Science & Engineering and Electrical Engineering, 17 (2), 189-195.
  29. [29] Bahar, H.B., Horrocks, D.H. (1998). Dynamic weight estimation using an artificial neural network. Artificial Intelligence in Engineering, 12 (1-2), 135-139.10.1016/S0954-1810(97)00017-4
  30. [30] Fraden, J. (2010). Handbook of Modern Sensors.Springer.10.1007/978-1-4419-6466-3
  31. [31] Burns, R.S.(2001). Advanced Control Engineering.Butterworth-Heinemann.
  32. [32] Bojarska, M., Jakubiec, J. (2001). A method of modelling sampling converter dynamic errors.Metrology and Measurement Systems, 8 (4), 337-355.
  33. [33] Palm, III, W.J. (2010). System Dynamics. Second edition. McGraw-Hill.
  34. [34] Dorf, R.C., Bishop, R.H. (2008). Modern Control Systems. Eleventh edition. Prentice Hall.
  35. [35] Jakubiec, J. (2010). Data Errors and Uncertainties in the Measurement and Control Systems. Gliwice, Wydawnictwo Politechniki Śląskiej. (in Polish)
  36. [36] MathWorks Inc. Neural Network Toolbox: User’s Guide.
  37. [37] Hagan, M.T., Menhaj, M. (1994). Training feedforward networks with the Marquardt algorithm.IEEE Transactions on Neural Networks, 5 (6), 989-993. 10.1109/72.32969718267874
Language: English
Page range: 286 - 291
Published on: Jan 14, 2014
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2014 J. Roj, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.

Volume 13 (2013): Issue 6 (December 2013)