Have a personal or library account? Click to login
A Comparative Study of SIFT and its Variants Cover

A Comparative Study of SIFT and its Variants

Open Access
|Jun 2013

References

  1. [1] Ouyang, W., Tombari, F., Mattoccia, S., Di Stefano, L., Cham, W.-K. (2012). Performance evaluation of full search equivalent pattern matching algorithms. IEEETransactions on Pattern Analysis and MachineIntelligence, 34 (1), 127-143.10.1109/TPAMI.2011.10621576734
  2. [2] Birinci, M., Diaz-de-Maria, F., Abdollahian, G. (2011). Neighborhood matching for object recognition algorithms based on local image features. In IEEEDigital Signal Processing Workshop and IEEE SignalProcessing Education Workshop (DSP/SPE), 4-7 January 2011. IEEE, 157-162.10.1109/DSP-SPE.2011.5739204
  3. [3] Mian, A., Bennamoun, M., Owens, R. (2010). On the repeatability and quality of keypoints for local featurebased 3D object retrieval from cluttered scenes. International Journal of Computer Vision, 89 (2-3), 348-361.10.1007/s11263-009-0296-z
  4. [4] Mikulka, J., Gescheidtova, E., Bartusek, K. (2012). Soft-tissues image processing: Comparison of traditional segmentation methods with 2D active contour methods. Measurement Science Review, 12 (4), 153-161.10.2478/v10048-012-0023-8
  5. [5] Kim, D., Rho, S., Hwang, E. (2012). Local featurebased multi-object recognition scheme for surveillance. Engineering Applications of ArtificialIntelligence, 25 (7), 1373-1380.10.1016/j.engappai.2012.03.005
  6. [6] Lowe, D.G. (1999). Object recognition from local scale invariant features. In Proceedings of the 7th IEEEInternational Conference on Computer Vision, 20-27 September 1999. IEEE, Vol. 2, 1150-1157.
  7. [7] Lowe, D.G. (2004). Distinctive image features from scale-invariant keypoints. International Journal ofComputer Vision, 60 (2), 91-110.10.1023/B:VISI.0000029664.99615.94
  8. [8] Tuytelaars, T., Mikolajczyk, K. (2008). Local invariant feature detectors: A survey. Foundations and Trendsin Computer Graphics and Vision, 3 (3), 177-280.
  9. [9] Juan, L., Gwun, O. (2009). A comparison of SIFT, PCA-SIFT and SURF. International Journal of ImageProcessing, 3 (4), 143-152.
  10. [10] Younes, L., Romaniuk, B., Bittar, E. (2012). A comprehensive and comparative survey of the SIFT algorithm - feature detection, description, and characterization. In Proceedings of the InternationalConference on Computer Vision Theory andApplications (VISAPP). SciTePress, Vol. 1, 467-474.
  11. [11] Ke, Y., Sukthankar, R. (2004). PCA-SIFT: A more distinctive representation for local image descriptors. In Computer Vision and Pattern Recognition (CVPR2004), 27 June - 2 July 2004. IEEE, Vol. 2, 506-513.
  12. [12] Mortensen, E.N., Deng, H., Shapiro, L. (2005). A SIFT descriptor with global context. In ComputerVision and Pattern Recognition (CVPR 2005), 20-25 June 2005. IEEE, Vol. 1, 184-190.
  13. [13] Abdel-Hakim, A.E., Farag, A.A. (2006). CSIFT: A SIFT descriptor with color invariant characteristics. In Computer Vision and Pattern Recognition (CVPR2006), 17-22 June 2006. IEEE, Vol. 2, 1978-1983.
  14. [14] Bay, H., Tuytelaars, T., Gool, L.V. (2006). SURF: Speeded up robust features. In Computer Vision -ECCV 2006 : 9th European Conference on ComputerVision, 7-13 May 2006. Springer, Part II, 404-417.10.1007/11744023_32
  15. [15] Morel, J.M., Yu, G. (2009). ASIFT: A new framework for fully affine invariant image comparison. SIAMJournal on Imaging Sciences, 2 (2), 438-469.10.1137/080732730
  16. [16] Rabbani, H. (2011). Statistical modeling of low SNR magnetic resonance images in wavelet domain using Laplacian prior and two-sided Rayleigh noise for visual quality improvement. Measurement ScienceReview, 11 (4), 125-130.10.2478/v10048-011-0023-0
  17. [17] Benveniste, R., Unsalan, C. (2011). A color invariant for line stripe-based range scanners. The ComputerJournal, 54 (5), 738-753.10.1093/comjnl/bxq014
  18. [18] Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A. (2005). A comparison of affine region detectors. International Journal of Computer Vision, 65 (1/2), 43-72.10.1007/s11263-005-3848-x
  19. [19] Wu, Z., Radke, R.J. (2012). Using scene features to improve wide-area video surveillance. In ComputerVision and Pattern Recognition Workshops (CVPRW), 16-21 June 2012. IEEE, 50-57.10.1109/CVPRW.2012.6239206
Language: English
Page range: 122 - 131
Published on: Jun 21, 2013
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2013 Jian Wu, Zhiming Cui, Victor S. Sheng, Pengpeng Zhao, Dongliang Su, Shengrong Gong, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.