Have a personal or library account? Click to login
Optimum Dataset Size and Search Space for Minimum Zone Roundness Evaluation by Genetic Algorithm Cover

Optimum Dataset Size and Search Space for Minimum Zone Roundness Evaluation by Genetic Algorithm

By: A. Meo,  L. Profumo,  A. Rossi and  M. Lanzetta  
Open Access
|Jun 2013

References

  1. [1] International Organization for Standardization (2011). ISO 1101, Geometrical Product Specifications (GPS)-tolerances of form, orientation, location and run out, 2nd ed., Geneva, Switzerland.
  2. [2] ASME B89.3.1 (2003) Measurement of Out-Of- Roundness.
  3. [3] Sharma, R., Rajagopal, K. & Anand, S. (2000). A genetic algorithm based approach for robust evaluation of form tolerances, Journal ofManufacturing Systems, 19(1), 46-57.10.1016/S0278-6125(00)88889-5
  4. [4] Dhanish, P.B. & Shunmugam, M.S. (1991). An algorithm for form error evaluation - using the theory of discrete and linear chebyshev approximation, Computer Methods in AppliedMechanics and Engineering, 92, 309-324.10.1016/0045-7825(91)90019-3
  5. [5] Murthy, T.S.R. & Abdin, S.Z. (1980). Minimum zone evaluation of surfaces, Int. J. of Machine ToolDesign Research, 20, 123-136.10.1016/0020-7357(80)90024-4
  6. [6] Kovvur, Y., Ramaswami, H., Anand R.B. & Sam Anand (2008). Minimum-zone form tolerance evaluation using particle swarm optimisation, Int. J. Intelligent Systems Technologies and Applications, 4(1/2).10.1504/IJISTA.2008.016360
  7. [7] Weber, T., Motavalli, S., Fallahi, B., & Cheraghi, S.H. (2002). A unified approach to form error evaluation, Journal of the International Societies forPrecision Engineering and Nanotechnology, 26, 269-278.10.1016/S0141-6359(02)00105-8
  8. [8] Wen, X., Xia, Q. & Zhao, Y. (2006). An effective genetic algorithm for circularity error unified evaluation, Int. J. of Machine Tools & Manufacture, 46, 1770-1777.10.1016/j.ijmachtools.2005.11.015
  9. [9] Yan, L., Yan, B., Cai, L., Hu, G. & Wang, M. (2009). Research on roundness error evaluation of shaft parts based on genetic algorithms with transfer-operator, ICEMI 2009 - Proceedings of Nineth International Conference on Electronic Measurement and Instruments, 2362-2366.10.1109/ICEMI.2009.5274566
  10. [10] Rossi, A., Antonetti, M., Barloscio M. & Lanzetta, M. (2011). Fast genetic algorithm for roundness evaluation by the minimum zone tolerance (MZT) method, Measurement, 44(7), 1243-1252.10.1016/j.measurement.2011.03.031
  11. [11] Rossi, A. & Lanzetta, M. (2013). Optimal blind sampling strategy for minimum zone roundness evaluation by metaheuristics, Precision Engineering, 37, 241-247, doi:10.1016/j.precisioneng.2012.09.001.10.1016/j.precisioneng.2012.09.001
  12. [12] Moroni, G. & Petrò, S. (2008). Geometric tolerance evaluation: A discussion on minimum zone fitting algorithms, Precision Engineering, 32(3), 232-237.10.1016/j.precisioneng.2007.08.007
  13. [13] Chajda, J., Grzelka, M.¸ Gapinski, B., Pawłowski, M. Szelewski, M. & Rucki, M. (2008). Coordinate measurement of complicated parameters like roundness, cylindricity, gear teeth or free-form surface, 8th Int. Conf. on Advanced Manufacturing Operations.
  14. [14] Gapinski, B, & Rucki, M. (2007). Uncertainty in CMM Measurement of Roundness, AMUEM 2007 - International Workshop on Advanced Methods for Uncertainty Estimation in Measurement Sardegna, Trento, Italy, 16-18 July 2007.10.1109/AMUEM.2007.4362564
  15. [15] Gapinski, B, Grezelka, M. & Rucki, M. (2006). Some aspects of the roundness measurement with CMM, XVIII IMEKO World Congress Metrology for a Sustainable Development September, 17 - 22, 2006, Rio de Janeiro, Brazil.
  16. [16] Rossi, A. (2001). A form of deviation-based method for coordinate measuring machine sampling optimization in an assessment of roundness, Proc. Instn Mech. Engrs, Part B: Journal of EngineeringManufacture, 215, 1505-1518.10.1243/0954405011519411
  17. [17] Rossi, A. (2001). A minimal inspection sampling technique for roundness evaluation, 1st CIRP International Seminar on PRogress in Innovative Manufacturing Engineering (Prime), Sestri Levante, Italy, June, 20-22, 2001, 189-196.
  18. [18] Weckenmann, A., Knauer, M., & Kunzmann, H. (1998). The influence of measurement strategy on the uncertainty of CMM-measurements. CIRP Annals-Manufacturing Technology, 47(1), 451-454.10.1016/S0007-8506(07)62872-8
  19. [19] Weckenmann, A., Weber, H., Eitzert, H. & Garmer, M. (1995). Functionality-oriented evaluation and sampling strategy in coordinate metrology, PrecisionEngineering, 17(4), 244-52.10.1016/0141-6359(94)00020-Z
  20. [20] Rossi, A. & Lanzetta, M. (2013). Roundness: a closed form upper bound for the centroid to minimum zone center distance by worst-case analysis, Measurement, 46 (7), 2251-2258, doi:10.1016/j.measurement.2013.03.025.10.1016/j.measurement.2013.03.025
  21. [21] National Physical Laboratory (UK), Data Generator for Chebyshev Best-Fit Circle, http://www.npl.co.uk/mathematics-scientific-computing/software-supportfor-metrology/,acc.05/2013.
Language: English
Page range: 100 - 107
Published on: Jun 21, 2013
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2013 A. Meo, L. Profumo, A. Rossi, M. Lanzetta, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.