Have a personal or library account? Click to login
Outlier Detection and Correction for the Deviations of Tooth Profiles of Gears Cover

Outlier Detection and Correction for the Deviations of Tooth Profiles of Gears

Open Access
|Apr 2013

References

  1. [1] Dočekal, A., Dynybyl, V., Kreidl, M., Šmíd, R., Žák, P. (2008). Localization of the best measuring point for gearwheel behaviour testing using group of adaptive models evolution. Measurement Science Review, 8 (2), 42-45.10.2478/v10048-008-0011-1
  2. [2] Takeoka, F., Komori, M., Kubo, A. et al. (2009). High-precision measurement of an involute artefact by a rolling method and comparison between measuring instruments. Measurement Science and Technology, 20, art. no. 045105.10.1088/0957-0233/20/4/045105
  3. [3] Yang, J., Arai, Y., Gao, W. (2009). Rapid measurement of involute profiles for scroll compressors. Measurement Science Review, 9 (3), 67-69.10.2478/v10048-009-0009-3
  4. [4] Lou, Z., Wang, L. (2010). Adjustment of the measurement point’s position in a double-disc instrument for measuring an involute. Metrologia, 47, 583-584.10.1088/0026-1394/47/5/009
  5. [5] Frazer, R.C., Bicker, R., Cox, B. et al. (2004). An international comparison of involute gear profile and helix measurement. Metrologia, 41, 12-13.10.1088/0026-1394/41/1/003
  6. [6] Kamenský, M., Kováč, K. (2011). Correction of ADC errors by additive iterative method with dithering. Measurement Science Review, 11 (1), 15-18.10.2478/v10048-011-0004-3
  7. [7] Barbato, G., Genta, G., Germak, A., Levi, R., Vicario, G. (2012). Treatment of experimental data with discordant observations: Issues in empirical identification of distribution. Measurement ScienceReview, 12 (4), 154-159.10.2478/v10048-012-0020-y
  8. [8] Ali, S.H.R. (2010). Probing system characteristics in coordinate metrology. Measurement Science Review, 10 (4), 121-129.10.2478/v10048-010-0023-5
  9. [9] Zhang, F., Qu, X. (2012). Fusion estimation of point sets from multiple stations of spherical coordinate instruments utilizing uncertainty estimation based on Monte Carlo. Measurement Science Review, 12 (2), 40-45.10.2478/v10048-012-0009-6
  10. [10] Miao, Y., Su, H., Gang, R., Chu, J. (2009). Industrial processes: Data reconciliation and gross error detection. Measurement and Control, 42 (7), 209-210.10.1177/002029400904200704
  11. [11] Koufakou, A., Georgiopoulos, M. (2010). A fast outlier detection strategy for distributed highdimensional data sets with mixed attributes. DataMining and Knowledge Discovery, 20 (2), 259-289.10.1007/s10618-009-0148-z
  12. [12] Wang, Z., Wang, Q., Wang, X. (2011). A novel method of gross error identification in non-diffracting beam triangulation measurement system. In FourthInternational Seminar on Modem Cutting andMeasurement Engineering, 10-12 December 2010. SPIE, Vol. 7997, 1-6.
  13. [13] Qin, P., Shen, Y., Wang, Z. (2006). Grey evaluation of non-statistical uncertainty in multidimensional precision measurement. International Journal ofAdvanced Manufacturing Technology, 31, 539-540.10.1007/s00170-005-0224-5
  14. [14] Zhang, Y., Yang, J., Jiang, H. (2012). Machine tool thermal error modeling and prediction by grey neural network. International Journal of AdvancedManufacturing Technology, 59, 1065-1066.10.1007/s00170-011-3564-3
  15. [15] Gao, Y., Wang, Z., Tao, Z., Lo, C. (2003). Estimation of non-statistical uncertainty in precision measurement using grey system theory. International Journal ofAdvanced Manufacturing Technology, 22, 271-272.10.1007/s00170-002-1470-4
  16. [16] Meng, H., Zhu, L., Chen, Q. (2010). Detection of abnormal data during dynamic measurement of discontinuous surfaces. In Sixth InternationalSymposium on Precision Engineering Measurementsand Instrumentation, 8-11 August 2010. SPIE, Vol. 75440, 1-6.
  17. [17] Shi, Z., Zhu, L., Dong, M. (2003). Grey detection and replacement of unwanted asperities in dynamic measurement of discontinuous curves. Journal ofBeijing University of Technology, 29 (1), 15-18.
  18. [18] Wang, Z., Gao, Y., Qin, P. (2002). Detection of gross measurement errors using the grey system method. International Journal of Advanced ManufacturingTechnology, 19, 801-804.10.1007/s001700200091
  19. [19] Ke, H., Chen, Y., Wu, J. (2008). New distinguishing model for gross error based on GM (1,1) model. Systems Engineering and Electronics, 30 (10), 2005-2006.
  20. [20] Lou, Z., Wang, L. (2008). Research on reference levelinvolute testing theory and technology. PhD thesis, Dalian University of Technology, China.
  21. [21] Xie, N., Liu, S. (2009). Discrete grey forecasting model and its optimization. Applied MathematicalModeling, 33, 1173-116.10.1016/j.apm.2008.01.011
  22. [22] Liu, S., Lin, Y. (2005). Grey Information: Theory andPractical Applications (1th ed.). Springer-Verlag.
  23. [23] Yao, T., Forrest, J., Gong, Z. (2012). Generalized discrete GM (1,1) model. Grey Systems: Theory andApplication, 2 (1), 4-12.10.1108/20439371211197622
  24. [24] Zhao, J., Yang, S., Xin, L. (2011). Stepwise ratio GM (1,1) model for image denoising. MeasurementScience Review, 11 (1), 36-44.10.1109/GSIS.2011.6043959
Language: English
Page range: 56 - 62
Published on: Apr 3, 2013
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2013 Han Lianfu, Fu Changfeng, Wang Jun, Tang Wenyan, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.