Have a personal or library account? Click to login
Artifact Removal from Biosignal using Fixed Point ICA Algorithm for Pre-processing in Biometric Recognition Cover

Artifact Removal from Biosignal using Fixed Point ICA Algorithm for Pre-processing in Biometric Recognition

Open Access
|Feb 2013

References

  1. [1] Teplan, M. (2002). Fundamentals of EEG measurement. Measurement Science Review, 2 (2), 1-11.
  2. [2] Eischen, S.E., Luckeritz, J.Y., Polish, J. (1995). Spectral analysis of EEG from families. BiologicalPsychology, 41, 61-68.10.1016/0301-0511(95)05129-X
  3. [3] Svidevskaya, N.E., Koroľkova, T.A. (1995). Genetic features of the human cerebral cortex. Neuroscience and Behavioural Physiology, 25 (5), 370-376.10.1007/BF023595938614477
  4. [4] Vogel, F. (1970). The genetic basis of the normal EEG. Human Genetics, 10, 91-114.
  5. [5] Poulos, M., Rangoussi, M., Hrissikopoulos, V., Evangelou, A. (1999). Person identification based on parametric processing of the EEG. In Proceedings of the IEEE International Conference on Electronics,Circuits, and Systems, 5-8 September 1999. IEEE, 283-286.10.1109/ICECS.1999.812278
  6. [6] Biel, L., Pettersson, O., Philipson, L., Wide, P. (2001). ECG analysis: A new approach in human identification. IEEE Transactions on Instrumentation and Measurement, 50, 808-812.10.1109/19.930458
  7. [7] Irvine, J.M., Wiederhold, B.K., Gavshon, L.W., Israel, S., McGehee, S.B., Meyer, R., Wiederhold, M.D. (2001). Heart rate variability: A new biometric for human identification. In International Conference on Artificial Intelligence (IC-AI 2001). Las Vegas, Nevada, 1106-1111.
  8. [8] Gupta, C.N., Palaniappan, R., Swaminathan, S. (2008). On the analysis of various techniques for a novel Biometric system. International Journal of Medical Engineering and Informatics, 1 (2), 266-273.10.1504/IJMEI.2008.020754
  9. [9] Ursulean, R., Lazar, A.M. (2009). Detrended crosscorrelation analysis of biometric signals used in a new authentication method. Electronics and Electrical Engineering, 1 (89), 55-58.
  10. [10] Gupta, C.N., Khan, Y.U., Palaniappan, R., Sepulveda, F. (2009). Wavelet framework for improved target detection in oddball paradigms using P300 and gamma band analysis. Biomedical Soft Computing and Human Sciences, 14 (2), 61-67.
  11. [11] Palaniappan, R., Eswaran, C. (2009). Using genetic algorithm to select the presentation order of training patterns that improves simplified fuzzy ARTMAP classification performance. Applied Soft Computing, 9, 100-106.10.1016/j.asoc.2008.03.003
  12. [12] Abdullah, M.K., Subari, K.S., Cheang Loong, J.L., Ahmad, N.N. (2010). Analysis of the EEG signal for a practical biometric system. World Academy of Science,Engineering and Technology, 68, 1123-1127.
  13. [13] Yang, X., Dai, J., Zhang, H., Wu, B., Su, Y., Chen, W., Zheng, X. (2011). P300 Wave based person identification using LVQ neural network. Journal of Convergence Information Technology, 6 (3), 296-302.
  14. [14] Gupta, C.N., Palaniappan, R., Paramesran, R. (2012). Exploiting the P300 paradigm for cognitive biometrics. International Journal of Cognitive Biometrics, 1 (1), 26-38.10.1504/IJCB.2012.046513
  15. [15] Singh, Y.N., Singh, S.K. (2012). Evaluation of electrocardiogram for biometric authentication. Journal of Information Security, 12 (3), 39-48.10.4236/jis.2012.31005
  16. [16] Israel, S.A., Scruggs, W.T., Worck, W.J., Irvine, J.M. (2003). Fusing face and ECG for person identification. In Proceedings of IEEE Applied Imagery Pattern Recognition Workshop, 15-17 October 2003. IEEE, 225-231.
  17. [17] Shen, T.W., Tompkins, W.J., Hu, Y.H (2002). Onelead ECG for identity verification. In ProceedingsIEEE EMBS/BMES Conference, 23-26 October 2002. IEEE, 62-63.
  18. [18] Makeig, S., Bell, A.J., Jung, T.P., Sejnowski, T.J. (1996). Independent component analysis of electroencephalographic data. Advances in Neural InformationProcessing Systems, 8, 145-151.
  19. [19] Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEETransactions on Neural Networks, 10 (3), 626-634.10.1109/72.76172218252563
  20. [20] Vigario, R., Sarela, J., Jousmaki, V., Hamalainen, M., Oja, E. (2000). Independent component approach to the analysis of EEG and MEG recordings. IEEETransactions on Biomedical Engineering, 47 (5), 589-593.10.1109/10.84133010851802
  21. [21] Jiang, J.A., Chao, C.F., Chiu, M.J., Lee, R.G., Tseng, C.L., Lin, R. (2007). An automatic analysis method for detecting and eliminating ECG artifacts in EEG. Computers in Biology and Medicine, 37, 1660-1671.10.1016/j.compbiomed.2007.03.007
  22. [22] Gupta, C.N., Palaniappan, R. (2011). Reducing power spectral density of eye blink artifact through improved genetic algorithm. In International Conference onBioinformatics and Biomedical Technology, 25-27 March 2011.
  23. [23] Palaniappan, R., Gupta, C.N. (2006). Genetic algorithm based independent component analysis to separate noise from electrocardiogram signals. In Proceedings of IEEE International Conference onEngineering of Intelligent Systems, 22-23 April 2006. IEEE, 1-5.10.1109/ICEIS.2006.1703159
  24. [24] Hyvarinen, A., Erkki, O. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13 (4-5), 411-430.10.1016/S0893-6080(00)00026-5
  25. [25] Ungureanu, M., Bigan, C., Strungaru, R., Lazarescu, V. (2004). Independent component analysis applied in biomedical signal processing. Measurement ScienceReview, 4, 1-8.
  26. [26] Krishnaveni, V., Jayaraman, S., Kumar, P.M., Shivakumar, K., Ramadoss, K. (2005). Comparison of independent component analysis algorithms for removal of ocular artifacts from electroencephalogram. Measurement Science Review, 5 (2), 67-78.
  27. [27] Jung, T.P., Makeigh, S., Humphries, C., Lee, T.W., Mckeown, M.J., Iragui, V., Sejnowski, J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37, 163-178.10.1111/1469-8986.3720163
  28. [28] Xu, L., Cheung, C., Yang, H., Amari, S. (1997). Independent component analysis by the informationtheoretic approach with mixture of densities. IEEETransactions on Neural Networks, 5, 1821-1826.
  29. [29] Agrawal, G., Singh, M., Singh, V.R., Singh, H.R. (2008). Reduction of artefacts in 12-channel ECG signals using FastICA algorithm. Journal of Scientificand Industrial Research, 67, 43-48.
  30. [30] Palaniappan, R. (2010). Biological Signal Analysis. Ventus Publishing.
  31. [31] Patil, D., Das, N., Routray, A. (2011). Implementation of fast-ICA: A performance based comparison between floating points, and fixed point DSP platform. Measurement Science Review, 11 (4), 118-124.10.2478/v10048-011-0022-1
Language: English
Page range: 7 - 11
Published on: Feb 9, 2013
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2013 Puneet Mishra, Sunil Kumar Singla, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons License.