References
- Karthikeyan, S., Narenthiran, B., Sivanantham, A., Bhatlu, L.D., Maridurai T., Supercapacitor: evolution and review, Mater. Today Proc., 2021, 46: 3984–3988. 10.1016/j.matpr.2021.02.526
- Şahin, M.E., Blaabjerg, F., Sangwongwanich, A., A comprehensive review on supercapacitor applications and developments, Energies, 2022, 15(3): 674. 10.3390/en15030674
- Bello, I.T., Oladipo, A.O., Adedokun, O., Dhlamini, S.M., Recent advances on the preparation and electrochemical analysis of MoS2-based materials for supercapacitor applications: a mini-review, Mater. Today Commun., 2020, 25: 101664. 10.1016/j.mtcomm.2020.101664
- Mohan, M., Shetti, N.P., Aminabhavi, T.M., Phase dependent performance of MoS2 for supercapacitor applications, J. Energy Storage, 2023, 58: 106321. 10.1016/j.est.2022.106321
- Mohan, M., Shetti, N.P., Aminabhavi, T.M., Recent developments in MoS2-based flexible supercapacitors, Mater. Today Chem., 2023, 27: 101333. 10.1016/j.mtchem.2022.101333
- Joseph, N., Shafi, P.M., Bose, A.C., Recent advances in 2D-MoS2 and its composite nanostructures for supercapacitor electrode application, Energy Fuels, 2020, 34(6): 6558–6597. 10.1021/acs.energyfuels.0c00430
- Gupta, H., Chakrabarti, S., Mothkuri, S., Padya, B., Rao, T.N., Jain, P.K., High performance supercapacitor based on 2D-MoS2 nanostructures, Mater. Today Proc., 2020, 26: 20–24. 10.1016/j.matpr.2019.04.198
- Sun, X., Pang, Y., Li, S., Yu, Y., Ding, X., Wang, L., et al., High performance asymmetric supercapacitor based on 3D microsphere-like 1T-MoS2 with high 1T phase content, Ceram. Int. 2022, 48(15): 21317–21326. 10.1016/j.ceramint.2022.04.098
- Kour, P., Deeksha, Yadav, K., Electrochemical performance of mixed-phase 1T/2H MoS2 synthesized by conventional hydrothermal v/s microwave-assisted hydrothermal method for supercapacitor applications, J. Alloys Compd., 2022, 922: 166194. 10.1016/j.jallcom.2022.166194
- Saseendran, S.B., Ashok, A., Asha, A.S., Flexible and binder-free supercapacitor electrode with high mass loading using transition metal doped MoS2 nanostructures, J. Alloys Compd., 2023, 968: 172131. 10.1016/j.jallcom.2023.172131
- Khandare, L.N., Late, D.J., Chaure, N.B., MoS2 nanobelts–carbon hybrid material for supercapacitor applications, Front. Chem., 2023, 11: 1166544. 10.3389/fchem.2023.1166544
- Tobis, M., Sroka, S., Frąckowiak, E., Supercapacitor with carbon/MoS2 composites, Front. Energy Res., 2021, 9: 647878
- Kour, P., Deeksha, Kour, S., Sharma, A.L., Yadav, K., Mixed-phase MoS2 nanosheets anchored carbon nanofibers for high energy symmetric supercapacitors, J. Energy Storage, 2023, 63: 107054. 10.1016/j.est.2023.107054
- Venkateshwaran, S., Senthil Kumar, S.M., Template-driven phase selective formation of metallic 1T-MoS2 nanoflowers for hydrogen evolution reaction, ACS Sustain. Chem. Eng., 2019, 7(2): 2008–2017. 10.1021/acssuschemeng.8b04335
- Aleithan, S.H., Al-Amer, K., Alhashem, Z., Alati, N.A., Alabbad, Z.H., Alam, K., Growth of MoS2 films: high-quality monolayered and multilayered material, AIP Adv., 2022, 12(7): 075220, 10.1063/5.0086228
- Aleithan, S.H., Ansari, S.A., Perdana, M.Y., Alam, K., Alhashem, Z., Al-Amer, K., The controllable ratio of the polyaniline-needle-shaped manganese dioxide for the high-performance supercapacitor application, Nanomaterials, 2023, 13(1): 101. 10.3390/nano13010101
- Ardahe, M., Hantehzadeh, M.R., Ghoranneviss, M., Effect of growth temperature on physical properties of MoS2 thin films synthesized by CVD, J. Electron. Mater., 2020, 49(2): 1002–1008. 10.1007/s11664-019-07796-1
- Rasamani, K.D., Alimohammadi, F., Sun, Y., Interlayer-expanded MoS2, Mater. Today 2017, 20(2): 83–91. 10.1016/j.mattod.2016.10.004
- Chakraborty, B., Matte, H.S.S.R., Sood, A.K., Rao, C.N.R., Layer-dependent resonant Raman scattering of a few layer MoS2, J. Raman Spectrosc., 2013, 44(1): 92–96. 10.1002/jrs.4147
- Li, H., Zhang, Q., Yap, C.C.R., Tay, B.K., Edwin, T.H.T., Olivier, A., et al., From bulk to monolayer MoS2: evolution of Raman scattering, Adv. Funct. Mater., 2012, 22(7): 1385–1390. 10.1002/adfm.201102111
- Yao, Y., Ao, K., Lv, P., Wei, Q., MoS2 coexisting in 1T and 2H phases synthesized by common hydrothermal method for hydrogen evolution reaction, Nanomaterials (Basel), 2019, 9(6): 844. 10.3390/nano9060844
- Venkateshwaran, S., Senthil Kumar, S.M., Provoking metallic 1T phase conversion of 2H-MoS2 via an effectual solvothermal route for electrocatalytic water reduction in acid, ACS Sustain. Chem. Eng., 2022, 10(16): 5258–5267. 10.1021/acssuschemeng.2c00381
- Saadati, M., Akhavan, O., Fazli, H., Single-layer MoS2–MoO3−x heterojunction nanosheets with simultaneous photoluminescence and co-photocatalytic features, Catalysts, 2021, 11(12): 1445. 10.3390/catal11121445
- Geng, X., Sun, W., Wu, W., Chen, B., Al-Hilo, A., Benamara, M., et al., Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction, Nat. Commun., 2016, 7: 10672. 10.1038/ncomms10672
- Kothaplamoottil Sivan, S., Padinjareveetil, A.K.K., Padil, V.V.T., Pilankatta, R., George, B., Senan, C., et al., Greener assembling of MoO3 nanoparticles supported on gum arabic: cytotoxic effects and catalytic efficacy towards reduction of p-nitrophenol, Clean Technol. Environ. Policy, 2019, 21(8): 1549–1561. 10.1007/s10098-019-01726-9
- Sharma, R.K., Reddy, G.B.S., Synthesis and characterization of α-MoO3 microspheres packed with nanoflakes, J. Phys. Appl. Phys., 2014, 47(6): 065305. 10.1088/0022-3727/47/6/065305
- Manikandan, R., Raina, G., Hydrothermally synthesized 2H-MoS2 under optimized conditions – a structure and morphology analysis, Phys. Scr., 2022, 97(12): 125808. 10.1088/1402-4896/ac9d6f
- Rui, S., Li, Z., Meng, L., Wang, Q., Xu, J., Zhao, Y., et al., Citric acid and plasma treated MoS2 for high-performance supercapacitors, J. Mater. Chem. C, 2025, 13(2): 849–857. 10.1039/D4TC04432K
- Mannayil, J., Pitkänen, O., Mannerkorpi, M., Kordas, K., Optimization and scalability assessment of supercapacitor electrodes based on hydrothermally grown MoS2 on carbon cloth, Nanoscale Adv., 2024, 6(18): 4647–4656. 10.1039/D4NA00368C
- Yuan, X., Xu, J., Zhao, Y., Rui, S., Wang, Q., Meng, L., et al., Plasma treatment of bismuth-doped MoS2 with excellent supercapacitor performance, J. Mater. Chem. C, 2025, 13(16): 8179–8187. 10.1039/D5TC00767D
- Al-Abawi, B.T., Parveen, N., Ansari, S.A., Controllable synthesis of sphere-shaped interconnected interlinked binder-free nickel sulfide@nickel foam for high-performance supercapacitor applications, Sci. Rep., 2022, 12(1): 14413. 10.1038/s41598-022-18728-1
- Ansari, M.Z., Seo, K.-M., Kim, S.-H., Ansari, S.A., Critical aspects of various techniques for synthesizing metal oxides and fabricating their composite-based supercapacitor electrodes: a review, Nanomaterials, 2022, 12(11): 1873. 10.3390/nano12111873
- Parveen, N., Ansari, M.O., Ansari, S.A., Kumar, P., Nanostructured titanium nitride and its composites as high-performance supercapacitor electrode material, Nanomaterials, 2023, 13(1): 105. 10.3390/nano13010105
- Parveen, N., Alsulaim, G.M., Alsharif, S.A., Almutairi, H.H., Alali, H.A., et al., Renewable biopolymer-derived carbon–nickel oxide nanocomposite as an emerging electrode material for energy storage applications, J. Sci. Adv. Mater. Devices, 2023, 8(3): 100591. 10.1016/j.jsamd.2023.100591