Have a personal or library account? Click to login
Tribological performance of Orvar 2M tool steel coated with ALWIN XC for improved forging tool durability Cover

Tribological performance of Orvar 2M tool steel coated with ALWIN XC for improved forging tool durability

By: Marek Hawryluk  
Open Access
|Dec 2025

References

  1. Hutchings, I.M., Shipway, P., Tribology: Friction and wear of engineering materials, (2nd ed.), Butterworth-Heinemann, 2017
  2. Tang, Z., Li, W., Yang, Z., Wang, J., Effect of solution and artificial aging heat treatment on the hardness, friction and wear properties of laser cladding and roll-formed 18Ni300 materials, Mater. Sci.-Poland, 2024, 42(2): 26–40. 10.2478/msp-2024-0017
  3. Roberts, G., Krauss, G., Kennedy, R., Tool steels, ASM International, 1998
  4. ASTM International, ASTM G99–17: Standard test method for wear testing with a pin-on-disk apparatus, ASTM International, 2016
  5. International Organization for Standardization, ISO 7148-1: Plain bearings – Tribological testing of bearing materials – Part 1: Determination of friction and wear properties of self-lubricating materials (ISO 7148), ISO, 1995
  6. Hawryluk, M., Marzec, J., Lachowicz, M., Makuła, P., Nowak, K., Evaluation of the possibility of improving the durability of tools made of X153CrMoV12 steel used in the extrusion of a clay band in ceramic roof tile production, Mater. Sci.-Poland, 2023, 41(1): 94–109. https://sciendo.com/pl/article/10.2478/msp-2023-0011.
  7. Straffelini, G., Friction and wear: Methodologies for design and control, Springer, 2015
  8. Vergne, C., Boher, C., Wear of hot-work tool steels under sliding contact, Wear, 2006, 260(7–8): 789–797. 10.1016/j.wear.2005.06.038
  9. Podgornik, B., Leskovšek, V., High temperature wear mechanisms of tool steels, Tribol. Int., 2010, 43(12): 2345–2352. 10.1016/j.triboint.2010.06.004
  10. Wang, L., Zhang, T., Li, X., Tribological behavior of hot-work tool steel under dry sliding, Wear, 2012, 292–293: 21–28. 10.1016/j.wear.2012.07.009
  11. Bay, N., Wanheim, T., Friction and wear in metal forming, CIRP Ann., 1992, 41(2): 645–650. 10.1016/S0007-8506(07)63277-5
  12. Muro, M., Artola, G., Gorriño, A., Angulo, C., Wear and friction evaluation of different tool steels for hot stamping, Adv. Mater. Sci. Eng., 2018, 2018: 3296398. 10.1155/2018/3296398
  13. Joun, M.S., Wear and durability of tool steels in hot forging processes. J. Mater. Process. Technol., 2008, 205(1–3): 426–433. 10.1016/j.jmatprotec.2007.11.030
  14. Kovačević, L., Vilotić, D., Tribological performance of hot work steels, Wear, 2011, 271(1–2): 212–220. 10.1016/j.wear.2010.09.005
  15. Demir, M., Kanca, E., Karahan, I.H., Effect of saccharin addition on formation, wear and corrosion resistance of electrodeposited Ni-Cr coatings, Mater. Sci.-Poland, 2024, 41(3): 111–125, Wroclaw University of Science and Technology. 10.2478/msp-2023-0036
  16. Hawryluk, M., Dudkiewicz, Ł., Zwierzchowski, M., Polak, S., Lachowicz, M., Ziemba, J., et al., Influence of the nitriding process on the durability of tools used in the production of automotive forgings in industrial hot die forging processes on hammers, Mater. Sci.-Poland, 2024, 42(4): 113–130. 10.2478/msp-2024-0047
  17. ASTM International, ASTM G133 – Standard test method for linearly reciprocating ball-on-flat sliding wear, ASTM International, 2017
  18. International Organization for Standardization, ISO 20808: Physical vapour deposition (PVD) coatings – Characterization (tribological properties), ISO, 2012
  19. Zhang, S., Wang, L., Kong, H., Recent advances in PVD coatings for high-temperature tribological applications, Surf. Coat. Technol., 2020, 385: 125430. 10.1016/j.surfcoat.2020.125430
  20. Holmberg, K., Matthews, A., Coatings tribology: Properties, mechanisms, techniques and applications, (2nd ed.), Elsevier, 2009
  21. Stachowiak, G.W., Batchelor, A.W., Engineering tribology, (4th ed.), Butterworth-Heinemann, 2014
  22. Pawlak, W., Urbaniak, W., Kulczyk, M., Influence of ceramic counterpart material on tribological behaviour of thin hard coatings, Tribol. Int., 2019, 138: 111–120. 10.1016/j.triboint.2019.01.045
  23. Khadem, M., Jahanmir, S., High-temperature tribological behaviour of advanced PVD coatings: A review, Wear, 2021, 488–489: 204178. 10.1016/j.wear.2021.204178
  24. Holmberg, K., Friction and wear of coatings at elevated temperatures, Tribol. Int., 2017, 115: 567–578. 10.1016/j.triboint.2017.07.009
  25. Vasileiou, A., Denkena, B., Breidenstein, B., Topographical analysis of wear tracks on thin films using 3D areal parameters, Wear, 2020, 454–455: 203324. 10.1016/j.wear.2020.203324
  26. Sadeghi, A., Zhang, T., Komvopoulos, K., Wear mechanisms and durability of advanced PVD coatings under severe tribological loading, Surf. Coat. Technol., 2021, 410: 126939. 10.1016/j.surfcoat.2021.126939
  27. Hawryluk, M., Gronostajski, Z., Widomski, P., Kaszuba, M.D., Ziemba, J., Smolik, J., Influence of the application of a PN + Cr/CrN hybrid layer on the improvement of the lifetime of hot forging tools, J. Mater. Process. Technol., 2018, 258: 226–238
  28. Hawryluk, M., Gronostajski, Z., Kaszuba, M.D., Polak, S., Widomski, P., Smolik, J., Analysis of the wear of forging tools surface layer after hybrid surface treatment, Int. J. Mach. Tools Manufacture, 2017, 114, 60–71
  29. Nose, Y., Kawamoto, M., Funabashi, H., Formation and evolution of tribo-oxide layers on hard coatings at elevated temperatures, Surf. Coat. Technol., 2018, 349, 1036–1045. 10.1016/j.surfcoat.2018.06.078
  30. Wojtaszek, M., Lisiecki, Ł., Łukaszek-Sołek, A., Korpała, G., Zyguła, K., Śleboda, T., et al., Application of processing maps and numerical modelling for identification of parameters and limitations of hot forging process of 80MnSi8-6 steel, Arch. Civ. Mech. Eng., 2023, 23: 240. 10.1007/s43452-023-00783-8
  31. Hawryluk, M., Dudkiewicz, Ł., Jabłońska, M., Polak, S., & Marzec, J., Analysis of the destruction of a die insert used in the industrial process of hot die forging to produce a yoke forging, Eng. Fail. Anal., 2024, 164, 108661. 10.1016/j.engfailanal.2024.108661
  32. Chen, J., Wang, S., Li, Y., Zhang, G., Oxidative wear behavior of H13 steel under dry sliding conditions at elevated temperatures, Tribology, 2011, 31(4): 317–322
  33. Cui, X., Wang, Z., Shen, B., Liu, J., Effect of tempering conditions on wear resistance in various wear mechanisms of H13 steel, Tribol. Int., 2011, 44(7–8): 898–905. 10.1016/j.triboint.2011.02.006
  34. Wang, Y., Li, J., Zhang, H., Chen, Z., Impact of applied loads on wear mechanisms in H13 steel at various preheating temperatures during laser powder bed fusion additive manufacturing, Wear, 2024, 556–557: 205538. 10.1016/j.wear.2024.205538
DOI: https://doi.org/10.2478/msp-2025-0045 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 107 - 121
Submitted on: Dec 23, 2025
|
Accepted on: Dec 28, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Marek Hawryluk, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.