Have a personal or library account? Click to login
Strengthening of fiber-reinforced geopolymer concrete after high-temperature exposure using CFRP sheets Cover

Strengthening of fiber-reinforced geopolymer concrete after high-temperature exposure using CFRP sheets

Open Access
|Sep 2025

References

  1. [1] Singh, N., Singh, A., Ankur, N., Kumar, P., Kumar, M., Singh, T., Reviewing the properties of recycled concrete aggregates and iron slag in concrete, J. Build. Eng., 2022, 60: 105150. 10.1016/j.jobe.2022.105150
    Singh N. Singh A. Ankur N. Kumar P. Kumar M. Singh T. Reviewing the properties of recycled concrete aggregates and iron slag in concrete J. Build. Eng. 2022 60 105150 10.1016/j.jobe.2022.105150
  2. [2] Singh, G.V.P.B., Subramaniam, K.V.L., Influence of processing temperature on the reaction product and strength gain in alkali-activated fly ash, Cem. Concr. Compos., 2019, 95: 10–18. 10.1016/j.cemconcomp.2018.10.010
    Singh, G.V.P.B. Subramaniam K.V.L. Influence of processing temperature on the reaction product and strength gain in alkali-activated fly ash Cem. Concr. Compos. 2019 95 10 18 10.1016/j.cemconcomp.2018.10.010
  3. [3] Thakur, M., Bawa, S., Self-compacting geopolymer concrete: a review, Mater. Today Proc., 2022, 59: 1683–1693. 10.1016/j.matpr.2022.03.400
    Thakur M. Bawa S. Self-compacting geopolymer concrete: a review Mater. Today Proc. 2022 59 1683 1693 10.1016/j.matpr.2022.03.400
  4. [4] Farooq, M., Krishna, A., Banthia, N., Highly ductile fiber reinforced geopolymers under tensile impact, Cem. Concr. Compos., 2022, 126: 104374. 10.1016/j.cemconcomp.2021.104374
    Farooq M. Krishna A. Banthia N. Highly ductile fiber reinforced geopolymers under tensile impact Cem. Concr. Compos. 2022 126 104374 10.1016/j.cemconcomp.2021.104374
  5. [5] Sharma, A., Basumatary, N., Singh, P., Kapoor, K., -Singh, S.P., Potential of geopolymer concrete as substitution for conventional concrete: A review, Mater. Today Proc., 2022, 57: 1539–1545. 10.1016/j.matpr.2021.12.159
    Sharma A. Basumatary N. Singh P. Kapoor K. Singh S.P. Potential of geopolymer concrete as substitution for conventional concrete: A review Mater. Today Proc. 2022 57 1539 1545 10.1016/j.matpr.2021.12.159
  6. [6] Pasupathy, K., Berndt, M., Sanjayan, J., Rajeev, P., Cheema, D.S., Durability of low calcium fly ash based geopolymer concrete culvert in a saline environment, Cem. Concr. Res., 2017, 100: 297–310. 10.1016/j.cemconres.2017.07.010
    Pasupathy K. Berndt M. Sanjayan J. Rajeev P. Cheema D.S. Durability of low calcium fly ash based geopolymer concrete culvert in a saline environment Cem. Concr. Res. 2017 100 297 310 10.1016/j.cemconres.2017.07.010
  7. [7] Li, L., Wei, Y., Li, Z., Farooqi, M.U., Rheological and viscoelastic characterizations of fly ash/slag/silica fume-based geopolymer, J. Clean. Prod., 2022, 354: 131629. 10.1016/j.jclepro.2022.131629
    Li L. Wei Y. Li Z. Farooqi M.U. Rheological and viscoelastic characterizations of fly ash/slag/silica fume-based geopolymer J. Clean. Prod. 2022 354 131629 10.1016/j.jclepro.2022.131629
  8. [8] Abdellatief, M., Elrahman, M.A., Abadel, A.A., Wasim, M., Tahwia, A., Ultra-high performance concrete versus ultra-high performance geopolymer concrete: Mechanical performance, microstructure, and ecological assessment, J. Build. Eng., 2023, 79: 107835. 10.1016/j.jobe.2023.107835
    Abdellatief M. Elrahman M.A. Abadel A.A. Wasim M. Tahwia A. Ultra-high performance concrete versus ultra-high performance geopolymer concrete: Mechanical performance, microstructure, and ecological assessment J. Build. Eng. 2023 79 107835 10.1016/j.jobe.2023.107835
  9. [9] Lee, W.H., Wang, J.H., Ding, Y.C., Cheng, T.W., A study on the characteristics and microstructures of GGBS/FA based geopolymer paste and concrete, Constr. Build. Mater., 2019, 211: 807–813. 10.1016/j.conbuildmat.2019.03.291
    Lee W.H. Wang J.H. Ding Y.C. Cheng T.W. A study on the characteristics and microstructures of GGBS/FA based geopolymer paste and concrete Constr. Build. Mater. 2019 211 807 813 10.1016/j.conbuildmat.2019.03.291
  10. [10] Saranya, P., Nagarajan, P., Shashikala, A.P., Performance studies on steel fiber–reinforced GGBS-dolomite geopolymer concrete, J. Mater. Civ. Eng., 2021, 33(2): 04020447. 10.1061/(asce)mt.1943-5533.0003530
    Saranya P. Nagarajan P. Shashikala A.P. Performance studies on steel fiber–reinforced GGBS-dolomite geopolymer concrete J. Mater. Civ. Eng. 2021 33 2 04020447 10.1061/(asce)mt.1943-5533.0003530
  11. Abadel, A.A., Albidah, A.S., Altheeb, A.H., Alrshoudi, F.A., Abbas, H., Al-Salloum, Y.A., Effect of molar ratios on strength, microstructure & embodied energy of metakaolin geopolymer, Adv. Concr. Constr., 2021, 11: 127–140
  12. Abadel, A.A., The performance of CFRP-strengthened heat-damaged metakaolin-based geopolymer concrete cylinders containing reclaimed asphalt aggregate, Mater. Sci. Pol., 2024, 42: 125–142
  13. [13] Alharbi, Y.R., Albidah, A., Synthesis of geopolymer mortar incorporating date palm ash, Constr. Build. Mater., 2024, 449: 138512. 10.1016/j.conbuildmat.2024.138512
    Alharbi Y.R. Albidah A. Synthesis of geopolymer mortar incorporating date palm ash Constr. Build. Mater. 2024 449 138512 10.1016/j.conbuildmat.2024.138512
  14. [14] Talha Junaid, M., Kayali, O., Khennane, A., Response of alkali activated low calcium fly-ash based geopolymer concrete under compressive load at elevated temperatures, Mater. Struct., 2017, 50: 50. 10.1617/s11527-016-0877-6
    Talha Junaid M. Kayali O. Khennane A. Response of alkali activated low calcium fly-ash based geopolymer concrete under compressive load at elevated temperatures Mater. Struct. 2017 50 50 10.1617/s11527-016-0877-6
  15. Davidovits, J., Geopolymer cement, a review, Geopolymer Institute Technical Pap., 2013, 21: 1–11
  16. [16] Raza, A., Ahmed, M., Azab, M., Arshad, M., Effectiveness of using nanoparticles in green composites: A scientometric analysis of fresh, mechanical, durability, and microstructural features, Constr. Build. Mater., 2023, 402: 133077. 10.1016/j.conbuildmat.2023.133077
    Raza A. Ahmed M. Azab M. Arshad M. Effectiveness of using nanoparticles in green composites: A scientometric analysis of fresh, mechanical, durability, and microstructural features Constr. Build. Mater. 2023 402 133077 10.1016/j.conbuildmat.2023.133077
  17. [17] Provis, J.L., Geopolymers and other alkali activated materials: why, how, and what?, Mater. Struct., 2013, 47: 11–25. 10.1617/s11527-013-0211-5
    Provis J.L. Geopolymers and other alkali activated materials: why, how, and what? Mater. Struct. 2013 47 11 25 10.1617/s11527-013-0211-5
  18. Zheng, Y., Zhang, W., Zheng, L., Zheng, J., Mechanical properties of steel fiber-reinforced geopolymer concrete after high temperature exposure, Constr. Build. Mater., 2024, 439: 137394
  19. Abdullah, A.F., Abdul-Rahman, M.B.A.D., Al-Attar, A.A., Investigate the mechanical characteristics and microstructure of fibrous-geopolymer concrete exposure to high temperatures, J. Rehabil. Civ. Eng., 2026, 14(1): 2141. 10.22075/jrce.2025.34716.2141.
  20. Sitarz, M., Figiela, B., Łach, M., Korniejenko, K., Mróz, K., Castro-Gomes, J., et al., Mechanical response of geopolymer foams to heating – Managing coal gangue in fire-resistant materials technology, Energies (Basel), 2022, 15: 3363
  21. Zhang, P., Feng, Z., Guo, J., Zheng, Y., Yuan, P., Mechanical behavior and microscopic damage mechanism of hybrid fiber-reinforced geopolymer concrete at elevated temperature, Ceram. Int., 2024, 50: 53851–53866
  22. Tu, W., Zhang, M., Behaviour of alkali-activated concrete at elevated temperatures: A critical review, Cem. Concr. Compos., 2023, 138: 104961
  23. [23] Vaičiukynienė, D., Nizevičienė, D., Kielė, A., Janavičius, E., Pupeikis, D., Effect of phosphogypsum on the stability upon firing treatment of alkali-activated slag, Constr. Build. Mater., 2018, 184: 485–491. 10.1016/j.conbuildmat.2018.06.213
    Vaičiukynienė D. Nizevičienė D. Kielė A. Janavičius E. Pupeikis D. Effect of phosphogypsum on the stability upon firing treatment of alkali-activated slag Constr. Build. Mater. 2018 184 485 491 10.1016/j.conbuildmat.2018.06.213
  24. [24] Li, L., Guan, J., Xie, Y., Cao, M., Characterization of bending performance of reinforced cementitious composites beams with hybrid fibers after exposure to high temperatures, Struct. Concr., 2021, 23: 395–411. 10.1002/suco.202100078
    Li L. Guan J. Xie Y. Cao M. Characterization of bending performance of reinforced cementitious composites beams with hybrid fibers after exposure to high temperatures Struct. Concr. 2021 23 395 411 10.1002/suco.202100078
  25. [25] Abbas, A.G.N., Aziz, F.N.A.A., Abdan, K., Nasir, N.A.M., Huseien, G.F., A state-of-the-art review on fibre-reinforced geopolymer composites, Constr. Build. Mater., 2022, 330: 127187. 10.1016/j.conbuildmat.2022.127187
    Abbas A.G.N. Aziz F.N.A.A. Abdan K. Nasir N.A.M. Huseien G.F. A state-of-the-art review on fibre-reinforced geopolymer composites Constr. Build. Mater. 2022 330 127187 10.1016/j.conbuildmat.2022.127187
  26. Ranjbar, N., Zhang, M., Fiber-reinforced geopolymer composites: A review, Cem. Concr. Compos., 2020, 107: 103498
  27. [27] Khan, M.Z.N., Hao, Y., Hao, H., Shaikh, F.U.A., Liu, K., Mechanical properties of ambient cured high-strength plain and hybrid fiber reinforced geopolymer composites from triaxial compressive tests, Constr. Build. Mater., 2018, 185: 338–353. 10.1016/j.conbuildmat.2018.07.092
    Khan M.Z.N. Hao Y. Hao H. Shaikh F.U.A. Liu K. Mechanical properties of ambient cured high-strength plain and hybrid fiber reinforced geopolymer composites from triaxial compressive tests Constr. Build. Mater. 2018 185 338 353 10.1016/j.conbuildmat.2018.07.092
  28. [28] Niş, A., Eren, N.A., Çevik, A., Effects of recycled tyre rubber and steel fibre on the impact resistance of slag-based self-compacting alkali-activated concrete, Eur. J. Environ. Civ. Eng., 2022, 27: 519–537. 10.1080/19648189.2022.2052967
    Niş A. Eren N.A. Çevik A. Effects of recycled tyre rubber and steel fibre on the impact resistance of slag-based self-compacting alkali-activated concrete Eur. J. Environ. Civ. Eng. 2022 27 519 537 10.1080/19648189.2022.2052967
  29. Zhao, J., Trindade, A.C.C., Liebscher, M., de Andrade Silva, F., Mechtcherine, V., A review of the role of elevated temperatures on the mechanical properties of fiber-reinforced geopolymer (FRG) composites, Cem. Concr. Compos., 2023, 137: 104885
  30. He, P., Jia, D., Lin, T., Wang, M., Zhou, Y., Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites, Ceram. Int., 2010, 36: 1447–1453
  31. Zhao, Q., Nair, B., Rahimian, T., Balaguru, P., Novel geopolymer based composites with enhanced ductility, J. Mater. Sci., 2007, 42: 3131–3137
  32. Zhang, H., Sarker, P.K., Wang, Q., He, B., Kuri, J.C., Jiang, Z., Comparison of compressive, flexural, and temperature-induced ductility behaviours of steel-PVA hybrid fibre reinforced OPC and geopolymer concretes after high temperatures exposure, Constr. Build. Mater., 2023, 399: 132560
  33. Abadel, A., Elsanadedy, H., Almusallam, T., Alaskar, A., Abbas, H., Al-Salloum, Y., Residual compressive strength of plain and fiber reinforced concrete after exposure to different heating and cooling regimes, Eur. J. Environ. Civ. Eng., 2022, 26: 6746–6765
  34. Albidah, A., Abadel, A., Alrshoudi, F., Altheeb, A., Abbas, H., Al-Salloum, Y., Bond strength between concrete substrate and metakaolin geopolymer repair mortars at ambient and elevated temperatures, J. Mater. Res. Technol., 2020, 9: 10732–10745
  35. [35] Abadel, A.A., Alharbi, Y.R., Confinement effectiveness of CFRP strengthened ultra-high performance concrete cylinders exposed to elevated temperatures, Mater. Sci.-Poland, 2021, 39: 478–490. 10.2478/msp-2021-0040
    Abadel A.A. Alharbi Y.R. Confinement effectiveness of CFRP strengthened ultra-high performance concrete cylinders exposed to elevated temperatures Mater. Sci.-Poland 2021 39 478 490 10.2478/msp-2021-0040
  36. Wang, J.J., Zhang, S.S., Nie, X.F., Yu, T., Compressive behavior of FRP-confined ultra-high performance concrete (UHPC) and ultra-high performance fiber reinforced concrete (UHPFRC), Compos. Struct., 2023, 312: 116879
  37. Zeng, X., Deng, K., Liang, H., Xu, R., Zhao, C., Cui, B., Uniaxial behavior and constitutive model of reinforcement confined coarse aggregate UHPC, Eng. Struct., 2020, 207: 110261
  38. Qaidi, S., Al-Kamaki, Y.S.S., Al-Mahaidi, R., Mohammed, A.S., Ahmed, H.U., Zaid, O., et al., Investigation of the effectiveness of CFRP strengthening of concrete made with recycled waste PET fine plastic aggregate, PLoS One, 2022, 17: e0269664
  39. Alzeebaree, R., Çevik, A., Mohammedameen, A., Niş, A., Gülşan, M.E., Mechanical performance of FRP-confined geopolymer concrete under seawater attack, Adv. Struct. Eng., 2020, 23: 1055–1073
  40. [40] ASTM C618-15: Specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, ASTM International, West Conshohocken, PA, USA, 2015. 10.1520/C0618-15
    ASTM C618-15 Specification for coal fly ash and raw or calcined natural pozzolan for use in concrete ASTM International, West Conshohocken, PA, USA 2015 10.1520/C0618-15
  41. [41] ASTM D3039, Standard test method for tensile properties of polymer matrix composite materials, ASTM International, West Conshohocken, PA, 2003, 10.1520/D3039_D3039M-08
    ASTM D3039 Standard test method for tensile properties of polymer matrix composite materials ASTM International West Conshohocken, PA 2003 10.1520/D3039_D3039M-08
  42. Alharbi, Y.R., Abadel, A.A., Alqarni, A.S., Binyahya, A.S., Compressive behavior of metakaolin–fly-ash-based geopolymer fiber-reinforced concrete after exposure to elevated temperatures, Mater. Sci.-Poland, 2025, 42: 1–17
  43. [43] ASTM C39/C39M-17b: Standard test method for compressive strength of cylindrical concrete specimens, ASTM International, West Conshohocken, PA, USA, 2017. 10.1520/C0039_C0039M-17B
    ASTM C39/C39M-17b: Standard test method for compressive strength of cylindrical concrete specimens ASTM International, West Conshohocken, PA, USA 2017 10.1520/C0039_C0039M-17B
  44. Albidah, A., Alqarni, A.S., Abbas, H., Almusallam, T., Al-Salloum, Y., Behavior of metakaolin-based geopolymer concrete at ambient and elevated temperatures, Constr. Build. Mater., 2022, 317: 125910
  45. Elsanadedy, H., Almusallam, T., Al-Salloum, Y., Iqbal, R., Effect of high temperature on structural response of reinforced concrete circular columns strengthened with fiber reinforced polymer composites, J. Compos. Mater., 2017, 51: 333–355
  46. Alwesabi, E.A., Bakar, B.H.A., Alshaikh, I.M.H., Akil, H.M., Impact resistance of plain and rubberized concrete containing steel and polypropylene hybrid fiber, Mater. Today Commun., 2020, 25: 101640
  47. Alwesabi, E.A.H., Bakar, B.H.A., Alshaikh, I.M.H., Abadel, A.A., Alghamdi, H., Wasim, M., An experimental study of compressive toughness of steel–polypropylene hybrid fibre-reinforced concrete, Structures, 2022, 37: 379–388, Elsevier
  48. Thomas, J., Ramaswamy, A., Mechanical properties of steel fiber-reinforced concrete, J. Mater. Civ. Eng., 2007, 19: 385–392
  49. [49] Abadel, A.A., Flexural behaviour of RC beams with a UHPFRC top layer and hybrid reinforcement of steel and glass fiber reinforced polymer bars, Case Stud. Constr. Mater., 2024, 21: e04017. 10.1016/j.cscm.2024.e04017
    Abadel A.A. Flexural behaviour of RC beams with a UHPFRC top layer and hybrid reinforcement of steel and glass fiber reinforced polymer bars Case Stud. Constr. Mater. 2024 21 e04017 10.1016/j.cscm.2024.e04017
  50. Xiao, S., Cai, Y., Guo, Y., Lin, J., Liu, G., Lan, X., et al., Experimental study on axial compressive performance of polyvinyl alcohol fibers reinforced fly ash – slag geopolymer composites, Polymers (Basel), 2021, 14: 142
  51. Zhong, H., Zhang, M., Effect of recycled tyre polymer fibre on engineering properties of sustainable strain hardening geopolymer composites, Cem. Concr. Compos., 2021, 122: 104167
  52. Batista, R.P., Trindade, A.C.C., Borges, P.H.R., Silva, F.D.A., Silica fume as precursor in the development of sustainable and high-performance MK-based alkali-activated materials reinforced with short PVA fibers, Front. Mater., 2019, 6: 77
  53. Ekaputri, J.J., Junaedi, S., Effect of curing temperature and fiber on metakaolin-based geopolymer, Procedia Eng., 2017, 171: 572–583
  54. [54] Zhang, P., Feng, Z., Yuan, W., Hu, S., Yuan, P., Effect of PVA fiber on properties of geopolymer composites: A comprehensive review, J. Mater. Res. Technol., 2024, 29: 4086–4101. 10.1016/j.jmrt.2024.02.151
    Zhang P. Feng Z. Yuan W. Hu S. Yuan P. Effect of PVA fiber on properties of geopolymer composites: A comprehensive review J. Mater. Res. Technol. 2024 29 4086 4101 10.1016/j.jmrt.2024.02.151
  55. Kong, D.L.Y., Sanjayan, J.G., Damage behavior of geopolymer composites exposed to elevated temperatures, Cem. Concr. Compos., 2008, 30: 986–991
  56. Zhang, H.Y., Kodur, V., Qi, S.L., Cao, L., Wu, B., Development of metakaolin–fly ash based geopolymers for fire resistance applications, Constr. Build. Mater., 2014, 55: 38–45
  57. Abadel, A., Abbas, H., Albidah, A., Almusallam, T., Al-Salloum, Y., Effectiveness of GFRP strengthening of normal and high strength fiber reinforced concrete after exposure to heating and cooling, Eng. Sci. Technol. Int. J., 2022, 36: 101147
  58. Sarker, P.K., Kelly, S., Yao, Z., Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete, Mater. Des., 2014, 63: 584–592
  59. [59] Gülşan, M.E., Alzeebaree, R., Rasheed, A.A., Niş, A., Kurtoğlu, A.E., Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber, Constr. Build. Mater., 2019, 211: 271–283. 10.1016/j.conbuildmat.2019.03.228
    Gülşan M.E. Alzeebaree R. Rasheed A.A. Niş A. Kurtoğlu A.E. Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber Constr. Build. Mater. 2019 211 271 283 10.1016/j.conbuildmat.2019.03.228
  60. Peng, Z., Kong, L.X., A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites, Polym. Degrad. Stab., 2007, 92: 1061–1071
  61. Zhang, P., Han, X., Zheng, Y., Wan, J., Hui, D., Effect of PVA fiber on mechanical properties of fly ash-based geopolymer concrete, Rev. Adv. Mater. Sci., 2021, 60: 418–437
  62. Sarkar, M., Dana, K., Partial replacement of metakaolin with red ceramic waste in geopolymer, Ceram. Int., 2021, 47: 3473–3483
  63. Vora, P.R., Dave, U.V., Parametric studies on compressive strength of geopolymer concrete, Procedia Eng., 2013, 51: 210–219
  64. Aly, A.M., El-Feky, M.S., Kohail, M., Nasr, E.S.A.R., Performance of geopolymer concrete containing recycled rubber, Constr. Build. Mater., 2019, 207: 136–144
  65. Bisby, L.A., Chen, J.F., Li, S.Q., Stratford, T.J., Cueva, N., Crossling, K., Strengthening fire-damaged concrete by confinement with fibre-reinforced polymer wraps, Eng. Struct., 2011, 33: 3381–3391
  66. Abadel, A.A., Masmoudi, R., Khan, M.I., Axial behavior of square and circular concrete columns confined with CFRP sheets under elevated temperatures: Comparison with welded-wire mesh steel confinement, Structures, 2022, 45: 126–144.
DOI: https://doi.org/10.2478/msp-2025-0028 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 31 - 49
Submitted on: Jul 20, 2025
|
Accepted on: Aug 22, 2025
|
Published on: Sep 3, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Mohammad Y. Khawaji, Aref A. Abadel, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.