Have a personal or library account? Click to login
Effect of laser welding on the microstructure and properties of ultrathin Inconel 718 sheets Cover

Effect of laser welding on the microstructure and properties of ultrathin Inconel 718 sheets

Open Access
|Jun 2025

References

  1. Sirignano, W.A., Liu, F., Performance increases for gas-turbine engines through combustion inside the turbine, J. Propuls. Power, 1999, 15(1): 111–118
  2. Zurfluh, T., Bond, S., A new high temperature exhaust sealing system, SAE Trans., 2007, 116: 613–619
  3. [3] Special Metals Corporation, INCONEL® Alloy 718 – Technical Bulletin [Internet], Special Metals, Huntington (WV) [cited 2025 Jul 22]. https://www.specialmetals.com/assets/documents/alloys/inconel/inconel-alloy-718.pdf
    Special Metals Corporation INCONEL® Alloy 718 – Technical Bulletin [Internet] Special Metals Huntington (WV) [cited 2025 Jul 22] https://www.specialmetals.com/assets/documents/alloys/inconel/inconel-alloy-718.pdf
  4. [4] Kumar, N., Dhara, S., Masters, I., Das, A., Substituting resistance spot welding with flexible laser spot welding to join ultra-thin foil of Inconel 718 to thick 410 steel, Materials, 2022, 15(9): 3405. 10.3390/ma15093405
    Kumar N. Dhara S. Masters I. Das A. Substituting resistance spot welding with flexible laser spot welding to join ultra-thin foil of Inconel 718 to thick 410 steel Materials 2022 15 9 3405 10.3390/ma15093405
  5. Li, W., Zhang, K., Yang, H., Diao, J., Design and optimization of V-shaped metallic sealing ring for automotive exhaust pipe, Lubr. Eng., 2023, 48(7): 159–166, 220
  6. Ohata, M., Toda, Y., Toyoda, M., Takeno, S., Control of welding distortion in fillet welds of aluminium alloy thin plates, Weld. Int., 1999, 13(12): 967–976
  7. Hou, J., Li, R., Xu, C., Li, T., Shi, Z., A comparative study on microstructure and properties of pulsed laser welding and continuous laser welding of Al-25Si-4Cu-Mg high silicon aluminum alloy, J. Manuf. Process., 2021, 68: 657–667
  8. Chai, D., Wu, D., Ma, G., Zhou, S., Jin, Z., Wu, D. The effects of pulse parameters on weld geometry and microstructure of a pulsed laser welding Ni-base alloy thin sheet with filler wire. Metals. 2016; 6(10): 237.
  9. Sheikhbahaee, H., Mirahmadi, S.J., Pakmanesh, M.R., Asghari, S., Investigating sensitivity to process parameters in pulsed laser micro-welding of stainless steel foils, Opt. Laser Technol., 2022, 148: 107737
  10. Krolczyk, G., Sedmak, A., Kumar, U., Chattopadhyaya, S., Das, A.K., Pramanik, A., Study of heat-affected zone and mechanical properties of Nd-YAG laser welding process of thin titanium alloy sheet, Nat. Resour. Eng., 2016, 1(2): 51–58
  11. Li, D., Han, Z., Zhao, P., Dong, Z., Zhao, S., Zhu, R., et al., Laser welding by focusing multi-laser beams, Opt. Express, 2024, 32(13): 23147–23160
  12. Verhaeghe, G., Hilton, P., The effect of spot size and laser beam quality on welding performance when using high-power continuous wave solid-state lasers, In Proceedings of ICALEO 2005: 24th International Congress on Laser Materials Processing and Laser Microfabrication, AIP Publishing, Melville, NY, 2005
  13. [13] Saurabh, S.K., Chand, P., Yadav, U.S., Optimizing laser beam welding performance parameters on nimonic 80A superalloy: a study on experimentation, TGRA, and PCA, Soldag. Inspeção, 2024, 29: e2904. 10.1590/0104-9224/SI29.04
    Saurabh S.K. Chand P. Yadav U.S. Optimizing laser beam welding performance parameters on nimonic 80A superalloy: a study on experimentation, TGRA, and PCA Soldag. Inspeção 2024 29 e2904 10.1590/0104-9224/SI29.04
  14. [14] Voropaev, A., Stranko, M., Sorokin, A., Logachev, I., Kuznetsov, M., Laser welding of Inconel 718 nickel-based alloy layer-by-layer products, Mater. Today Proc., 2020, 30: 471–477. 10.1016/j.matpr.2019.12.032
    Voropaev A. Stranko M. Sorokin A. Logachev I. Kuznetsov M. Laser welding of Inconel 718 nickel-based alloy layer-by-layer products Mater. Today Proc. 2020 30 471 477 10.1016/j.matpr.2019.12.032
  15. [15] Sharif, S.M., Ramji, M., Akiyama, T., Saurabh, S.K., Ganesh, S., Petley, V.U., et al., A study on laser welding of Inconel 718 and evolution of strain field using digital image correlation to estimate the localized properties, Opt. Laser Technol., 2024, 164: 109472. 10.1016/j.optlastec.2024.109472
    Sharif S.M. Ramji M. Akiyama T. Saurabh S.K. Ganesh S. Petley V.U. A study on laser welding of Inconel 718 and evolution of strain field using digital image correlation to estimate the localized properties Opt. Laser Technol. 2024 164 109472 10.1016/j.optlastec.2024.109472
  16. Uranga, G.U., Oiartzun, M.A., Cabello, M.J., Molpeceres, C., Morales, M., General methodology for laser welding finite element model calibration. Processes, 2024, 12(12): 2687.
  17. Han, Q., Kim, D., Kim, D., Lee, H., Kim, N., Laser pulsed welding in thin sheets of Zircaloy-4, J. Mater. Process. Technol., 2012, 212(5): 1116–1122
  18. Baruah, M., Bag, S., Influence of pulsation in thermo-mechanical analysis on laser micro-welding of Ti6Al4V alloy, Opt. Laser Technol., 2017, 90: 40–51
  19. Zhang, Y., Ying, Y., Liu, X., Wei, H., Deformation control during the laser welding of a Ti6Al4V thin plate using a synchronous gas cooling method, Mater. Des., 2016, 90: 931–941
  20. Chen, J., Chang, Y., Wei, Y., Building ultra-thin Inconel 718 sheet joints using low-frequency PLBW scheme: Weld bead quality, keyhole dynamics, and solidification characteristics, J. Mater. Res. Technol., 2023, 27: 4145–4156
  21. Li, L., Peng, G., Wang, J., Gong, J., Li, H., Experimental study on weld formation of Inconel 718 with fiber laser welding under reduced ambient pressure, Vacuum, 2018, 151: 140–147
  22. Zhu, W., Zhao, F., Yin, S., Liu, Y., Yang, R., Effect of tensile deformation on residual stress of GH4169 alloy, Materials, 2021, 14(7): 1773
  23. Wu, C.L., Yin, H., Huang, Z.H., Optimization of pulsed laser welding parameters for GH4169 nickel-based superalloy, Tool. Technol., 2020, 54(10): 38–42 (in Chinese)
  24. Zhang, D., Wu, R., Zhang, H., Liu, Z., Numerical simulation of temperature field evolution in the process of laser metal deposition, Chin. J. Lasers, 2015, 42(5): 112–123
  25. Ghosh, P.S., Sen, A., Chattopadhyaya, S., Sharma, S., Singh, J., Dwivedi, S.P., et al., Prediction of transient temperature distributions for laser welding of dissimilar metals, Appl. Sci., 2021, 11(13): 5829
  26. [26] Yang, Z., Li, W., Zhang, Y., Song M., Gao Q., Optimization and analysis of surface milling parameters of additive manufacturing maraging steel, Iron Steel., 2024, 59(6): 135–144. 10.13228/j.boyuan.issn0449-749x.20240091
    Yang Z. Li W. Zhang Y. Song M. Gao Q. Optimization and analysis of surface milling parameters of additive manufacturing maraging steel Iron Steel 2024 59 6 135 144 10.13228/j.boyuan.issn0449-749x.20240091
  27. Cumming, G., Fidler, F., Vaux, D.L., Error bars in experimental biology, J. Cell Biol., 2004, 166(2): 247–251
  28. Tzeng, Y., Parametric analysis of the pulsed Nd:YAG laser seam-welding process, J. Mater. Process. Technol., 2000, 102(1–3): 40–47
  29. Liu, T., Mu, Z., Hu, R., Pang, S., Sinusoidal oscillating laser welding of 7075 aluminum alloy: hydrodynamics, porosity formation and optimization, Int. J. Heat. Mass. Transf., 2019, 140: 346–358
  30. Yan, S, Zhu, Z, Ma, C, Qin, Q.H., Chen, H., Fu, Y.N., Porosity formation and its effect on the properties of hybrid laser welded Al alloy joints, Int. J. Adv. Manuf. Technol., 2019, 104: 2645–2656
  31. Tadamalle, A.P., Reddy, Y.P., Ramjee, E., Influence of laser welding process parameters on weld pool geometry and duty cycle, Adv. Prod. Eng. Manag., 2013, 8(1): 52
  32. Stein, F., Leineweber, A., Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties, J. Mater. Sci., 2021, 56(9): 5321–5427
  33. Wang, L, Cui, R, Li, B, Jia, X., Yao, L.H., Su, Y.Q., et al., Influence of laser parameters on segregation of Nb during selective laser melting of Inconel 718, China Foundry, 2021, 18: 379–388
  34. Artaza, T., Bhujangrao, T., Suárez, A., Veiga, F., Lamikiz, A., Influence of heat input on the formation of Laves phases and hot cracking in plasma arc welding (PAW) additive manufacturing of Inconel 718, Metals, 2020, 10(6): 771
  35. Haisheng, Z., Lijia, F., Huan, L., Kaiqin, D., Effect of hot isostatic pressing on microstructure and high temperature properties of GH4169 alloy formed by selective laser melting, J. Aeronaut. Mater., 2024, 44(1): 44–50. (in Chinese)
  36. Kontis, P., Chauvet, E., Peng, Z., He, J., da Silva, A.K., Raabe, D., et al., Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys, Acta Mater., 2019, 177: 209–221
  37. Sharma, S.K., Biswas, K., Nath, A.K., Manna, I., Majumdar, J.D., Microstructural change during laser welding of Inconel 718, Optik, 2020;218:165029
  38. Liang, R., Luo, Y., Study on weld pool behaviors and ripple formation in dissimilar welding under pulsed laser, Opt. Laser Technol., 2017, 93: 1–8
DOI: https://doi.org/10.2478/msp-2025-0026 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 153 - 170
Submitted on: Jun 19, 2025
|
Accepted on: Aug 10, 2025
|
Published on: Jun 30, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Chao Wu, Weimin Li, Zhaoqing Tang, Jixiang Liang, Jiahui Li, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.