Have a personal or library account? Click to login
Analysis of fire resistance of ethylene-vinyl acetate polymer calcium sulfoaluminate cement mortars Cover

Analysis of fire resistance of ethylene-vinyl acetate polymer calcium sulfoaluminate cement mortars

Open Access
|Jun 2025

References

  1. [1] Semwogerere, D., Sangesland, S., Vatn, J., Pavlov, A., Colombo, D., Well integrity and late life extension – A current industry state of practice and literature review, Geoenergy Sci. Eng., 2025, 244, 213419. 10.1016/j.geoen.2024.213419
    Semwogerere D. Sangesland S. Vatn J. Pavlov A. Colombo D. Well integrity and late life extension – A current industry state of practice and literature review Geoenergy Sci. Eng. 2025 244 213419 10.1016/j.geoen.2024.213419
  2. [2] Macorig, D., Ristori, C., Fiore, P., Bertoli, V., Road maintenance: which future?, Transp. Res. Procedia, 2023, 69: 687–694. 10.1016/j.trpro.2023.02.224
    Macorig D. Ristori C. Fiore P. Bertoli V. Road maintenance: which future? Transp. Res. Procedia 2023 69 687 694 10.1016/j.trpro.2023.02.224
  3. [3] Guo, C., Wang, R., Influence of calcium sulfoaluminate cement on early-age properties and microstructure of Portland cement with hydroxypropyl methyl cellulose and superplasticizer, J. Build. Eng., 2022, 45: 103470. 10.1016/j.jobe.2021.103470
    Guo C. Wang R. Influence of calcium sulfoaluminate cement on early-age properties and microstructure of Portland cement with hydroxypropyl methyl cellulose and superplasticizer J. Build. Eng. 2022 45 103470 10.1016/j.jobe.2021.103470
  4. [4] Zhou, H., Qi, X., Ma, C., Fang, Z., Lou, J., Chen, H., et al., Effect and mechanism of composite early- strength agents on sulfoaluminate cement-based UHPC, Case Stud. Constr. Mater., 2023, 18: e01768. 10.1016/j.cscm.2022.e01768
    Zhou H. Qi X. Ma C. Fang Z. Lou J. Chen H. Effect and mechanism of composite early- strength agents on sulfoaluminate cement-based UHPC Case Stud. Constr. Mater. 2023 18 e01768 10.1016/j.cscm.2022.e01768
  5. [5] Yuan, P., Zhang, B., Yang, Y., Jiang, T., Li, J., Qiu, J., et al., Application of polymer cement repair mortar in underground engineering: A review, Case Stud. Constr. Mater., 2023, 19: e02555. 10.1016/j.cscm.2023.e02555
    Yuan P. Zhang B. Yang Y. Jiang T. Li J. Qiu J. Application of polymer cement repair mortar in underground engineering: A review Case Stud. Constr. Mater. 2023 19 e02555 10.1016/j.cscm.2023.e02555
  6. [6] Ohama, Y., Polymer-based materials for repair and improved durability: Japanese experience, Constr. Build. Mater., 1996, 10(1): 77–82. 10.1016/0950-0618(95)00063-1
    Ohama Y. Polymer-based materials for repair and improved durability: Japanese experience Constr. Build. Mater. 1996 10 1 77 82 10.1016/0950-0618(95)00063-1
  7. [7] Hou, X., Li, J., Xu, J., Xiao, X., Wang, J., Liu, Y., et al., Experimental study of sulfoaluminate cement-based rapid repair mortar undergoing hot/wet harsh conditions: Mechanical strengths, hydration products, and ettringite evolution mechanism, ACS Sustain. Chem. Eng., 2024, 12(2): 10089–10101. 10.1021/acssuschemeng.3c08366
    Hou X. Li J. Xu J. Xiao X. Wang J. Liu Y. Experimental study of sulfoaluminate cement-based rapid repair mortar undergoing hot/wet harsh conditions: Mechanical strengths, hydration products, and ettringite evolution mechanism ACS Sustain. Chem. Eng. 2024 12 2 10089 10101 10.1021/acssuschemeng.3c08366
  8. [8] Pang, B., Yang, C., Wang, P., Mei, T.L., Song, X., Cement-based ductile rapid repair material modified with self-emulsifying waterborne epoxy, J. Build. Eng., 2023, 79: 107864. 10.1016/j.jobe.2023.107864
    Pang B. Yang C. Wang P. Mei T.L. Song X. Cement-based ductile rapid repair material modified with self-emulsifying waterborne epoxy J. Build. Eng. 2023 79 107864 10.1016/j.jobe.2023.107864
  9. [9] Brien, J.V., Mahboub, K.C., Influence of polymer type on adhesion performance of a blended cement mortar, Int. J. Adhes. Adhes., 2013, 43: 7–13. 10.1016/j.ijadhadh.2013.01.007
    Brien J.V. Mahboub K.C. Influence of polymer type on adhesion performance of a blended cement mortar Int. J. Adhes. Adhes. 2013 43 7 13 10.1016/j.ijadhadh.2013.01.007
  10. [10] Ohama, Y., Ramachandran, V.S., Polymer-modified mortars and concretes, Concrete Admixtures Handbook, 1996, 558–656. 10.1016/B978-081551373-5.50013-1
    Ohama Y. Ramachandran V.S. Polymer-modified mortars and concretes Concrete Admixtures Handbook 1996 558 656 10.1016/B978-081551373-5.50013-1
  11. [11] Yang, F., Kouadjo, T.J.J., Wang, S., Huang, S., Cheng, X., The effect of extensive heat exposure on the mechanical properties of polymer-modified sulfoaluminate cement repair mortar, Case Stud. Constr. Mater., 2024, 20: e03348. 10.1016/j.cscm.2024.e03348
    Yang F. Kouadjo T.J.J. Wang S. Huang S. Cheng X. The effect of extensive heat exposure on the mechanical properties of polymer-modified sulfoaluminate cement repair mortar Case Stud. Constr. Mater. 2024 20 e03348 10.1016/j.cscm.2024.e03348
  12. [12] Kiani, B., Liang, R.Y., Gross, J., Material selection for repair of structural concrete using VIKOR method, Case Stud. Constr. Mater., 2018, 8: 489–497. 10.1016/j.cscm.2018.03.008
    Kiani B. Liang R.Y. Gross J. Material selection for repair of structural concrete using VIKOR method Case Stud. Constr. Mater. 2018 8 489 497 10.1016/j.cscm.2018.03.008
  13. [13] He, Y., Wen, F., Lian, P., Chen, R., Bai, Y., Ma, J, et al., Preparation and performance of acrylic mortar repair material modified suitably by nano-fiber and nanoparticle in low-temperature for high-strength gain applications in construction, J. Build. Eng., 2024, 84: 108366. 10.1016/j.jobe.2023.108366
    He Y. Wen F. Lian P. Chen R. Bai Y. Ma J Preparation and performance of acrylic mortar repair material modified suitably by nano-fiber and nanoparticle in low-temperature for high-strength gain applications in construction J. Build. Eng. 2024 84 108366 10.1016/j.jobe.2023.108366
  14. [14] Chindaprasirt, P., Lao-un, J., Zaetang, Y., Wongkvanklom, A., Phoo-ngernkham, T., Wongsa, A., et al., Thermal insulating and fire resistance performances of geopolymer mortar containing auto glass waste as fine aggregate, J. Build. Eng., 2022, 60: 105178. 10.1016/j.jobe.2022.105178
    Chindaprasirt P. Lao-un J. Zaetang Y. Wongkvanklom A. Phoo-ngernkham T. Wongsa A. Thermal insulating and fire resistance performances of geopolymer mortar containing auto glass waste as fine aggregate J. Build. Eng. 2022 60 105178 10.1016/j.jobe.2022.105178
  15. [15] Jin, Z., Li, S., Li, Z., Li, S., Polymer-modified sulphoaluminate cement-based mortar anode and its optimal arrangement for electrochemical chloride extraction, Constr. Build. Mater., 2022, 348: 128665. 10.1016/j.conbuildmat.2022.128665
    Jin Z. Li S. Li Z. Li S. Polymer-modified sulphoaluminate cement-based mortar anode and its optimal arrangement for electrochemical chloride extraction Constr. Build. Mater. 2022 348 128665 10.1016/j.conbuildmat.2022.128665
  16. [16] Wang, R., The role of polymer in calcium sulfoaluminate cement-based materials. Circular Economy. Springer Proceedings in Materials, 2025. 10.1007/978-3-031-72955-3_16
    Wang R. The role of polymer in calcium sulfoaluminate cement-based materials. Circular Economy Springer Proceedings in Materials 2025 10.1007/978-3-031-72955-3_16
  17. [17] Wu, X., Sharma, R., Das, K.K., Ahn, J., Jang, J.G., Effect of CO2 curing on the resistance of calcium sulfoaluminate cement paste to elevated temperature. Constr. Build. Mater., 2024, 456: 139338. 10.1016/j.conbuildmat.2024.139338
    Wu X. Sharma R. Das K.K. Ahn J. Jang J.G. Effect of CO2 curing on the resistance of calcium sulfoaluminate cement paste to elevated temperature Constr. Build. Mater. 2024 456 139338 10.1016/j.conbuildmat.2024.139338
  18. [18] Aattache, A., Soltani, R., Durability-related properties of early-age and long-term resistant laboratory elaborated polymer-based repair mortars, Constr. Build. Mater., 2020, 235: 117494. 10.1016/j.conbuildmat.2019.117494
    Aattache A. Soltani R. Durability-related properties of early-age and long-term resistant laboratory elaborated polymer-based repair mortars Constr. Build. Mater. 2020 235 117494 10.1016/j.conbuildmat.2019.117494
  19. [19] Mensah, R.A., Wang, D., Shanmugam, V., Sas, G., Försth, M., Das, O., Fire behaviour of biochar-based cementitious composites, Compos. Part. C: Open. Access., 2024, 14: 100471. 10.1016/j.jcomc.2024.100471
    Mensah R.A. Wang D. Shanmugam V. Sas G. Försth M. Das O. Fire behaviour of biochar-based cementitious composites Compos. Part. C: Open. Access. 2024 14 100471 10.1016/j.jcomc.2024.100471
  20. [20] Gao, Z., Wang, L., Zhang, H., Underground space simulation of thermal expansion mismatch at high temperature, Undergr. Space, 2023, 8: 210–228. 10.1016/j.undsp.2022.03.007
    Gao Z. Wang L. Zhang H. Underground space simulation of thermal expansion mismatch at high temperature Undergr. Space 2023 8 210 228 10.1016/j.undsp.2022.03.007
  21. [21] Ohama, Y., Kokubun, Y., Shirai, A., Fire-protecting performance of polymer-modified mortars for buildings and proposal for fire-protecting performance test methods for them, J. Struct. Constr. Eng. (Trans. AIJ), 2008, 73(631): 1449–1457. 10.3130/aijs.73.1449
    Ohama Y. Kokubun Y. Shirai A. Fire-protecting performance of polymer-modified mortars for buildings and proposal for fire-protecting performance test methods for them J. Struct. Constr. Eng. (Trans. AIJ) 2008 73 631 1449 1457 10.3130/aijs.73.1449
  22. GB/T 20976 – 2007, Calcium Sulphoaluminate Cement, Published by China Building Materials Federation and Standardization Administration of China, Beijing, 2007
  23. GB/T 17671 – 1999, Test method of cement mortar strength (ISO method), China National Standardization Administration, China, 1999
  24. GB 50164-2011, Standard for Quality Control of Concrete, National Standard of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China, 2011
  25. GB/T 17671-2021, Test Method of Cement Mortar Strength (ISO Method), National Standard of China, State Administration for Market Regulation; Standardization Administration of the People’s Republic of China, China, 2021
  26. EN 480-5:2005, Standard for Admixtures for Concrete, Mortar, and Grout - Test Methods - Determination of Capillary Absorption, European Committee for Standardization (CEN), Brussels, Belgium, 2005
  27. UNE-EN 1363-1:2012, Standard for Fire Resistance Tests - Part 1: General Requirements, European Committee for Standardization (CEN), Brussels, Belgium, 2012
  28. UNE-EN 1363-2:2000, Standard for Fire Resistance Tests - Part 2: Alternative and Additional Procedures, European Committee for Standardization (CEN), Brussels, Belgium, 2000
  29. UNE-EN 1365-4:2000, Standard for Fire Resistance Tests for Loadbearing Elements - Part 4: Columns, European Committee for Standardization (CEN), Brussels, Belgium, 2000
  30. ISO R-834:1968, Standard for Fire Resistance Tests, International Organization for Standardization (ISO), Geneva, Switzerland, 1968
  31. ASTM C1060-18, Standard Practice for Thermographic Inspection of Insulation Installations in Envelope Cavities of Frame Buildings, ASTM International, West Conshohocken, 2018
  32. ASTM C109/C109M, Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50- mm] Cube Specimens), 2021, ASTM C109/C109M-21, ASTM International, West Conshohocken.
  33. GB/T 42277-2022, Test Method for Carbonation of Cement Mortar, National Standardization Management Committee, State Administration for Market Regulation, People’s Republic of China, 2022
  34. ASTM C1723-16, Standard Guide for Examination of Hardened Concrete Using Scanning Electron Microscopy, Standards Press of China, United States, 2016
  35. GB/T 3183-2017, Specification for Masonry Cement, National Technical Committee on Cements of Standardization Administration of China, General Administration of Quality Supervision, Inspection and Quarantine, People’s Republic of China, 2017
  36. ASTM B922, Metal Powder Specific Surface Area by Physical Adsorption, ASTM International, West Conshohocken, 2008
  37. [37] Cai, R., Qi, H., Mao, J., Improved crack resistance and pore structure of cement-based materials by adding EVA powder, J. Mater. Civ. Eng., 2022, 34: 4. 10.1061/(ASCE)MT.1943-5533.0004143
    Cai R. Qi H. Mao J. Improved crack resistance and pore structure of cement-based materials by adding EVA powder J. Mater. Civ. Eng. 2022 34 4 10.1061/(ASCE)MT.1943-5533.0004143
  38. [38] Sidiq, A., Setunge, S., Annamalai, P.K., Gravina, R.J., Giustozzi, F., Concrete self-healing performance using surface roughness parameters: Metrological approach, J. Build. Eng., 2024, 90: 109433. 10.1016/j.jobe.2024.109433
    Sidiq A. Setunge S. Annamalai P.K. Gravina R.J. Giustozzi F. Concrete self-healing performance using surface roughness parameters: Metrological approach J. Build. Eng. 2024 90 109433 10.1016/j.jobe.2024.109433
  39. [39] Yang, S., He, S., Liu, S., Study on the evolutionary mechanism of shrinkage stress-strain behavior of EVA-modified cement mortar at an early age, J. Build. Eng., 2024, 91: 109492. 10.1016/j.jobe.2024.109492
    Yang S. He S. Liu S. Study on the evolutionary mechanism of shrinkage stress-strain behavior of EVA-modified cement mortar at an early age J. Build. Eng. 2024 91 109492 10.1016/j.jobe.2024.109492
  40. [40] Balagopal, V., Raju, J.P., Kumar, A.A., Sajeev M., Veena P., Effect of ethylene vinyl acetate on cement mortar – A review, Mater. Today: Proc., 2023. 10.1016/j.matpr.2023.03.692
    Balagopal V. Raju J.P. Kumar A.A. Sajeev M. Veena P. Effect of ethylene vinyl acetate on cement mortar – A review Mater. Today: Proc. 2023 10.1016/j.matpr.2023.03.692
  41. [41] Yeon, K.S., Kim, K.K., Yeon, J., Lee, H.J., Compressive and flexural strengths of EVA-modified mortars for 3D additive construction, Materials, 2019, 12(16): 2600. 10.3390/ma12162600
    Yeon K.S. Kim K.K. Yeon J. Lee H.J. Compressive and flexural strengths of EVA-modified mortars for 3D additive construction Materials 2019 12 16 2600 10.3390/ma12162600
  42. [42] Yeon, J., Short-term deformability of three-dimensional printable EVA-modified cementitious mortars, Appl. Sci., 2019, 9(19): 4184. 10.3390/app9194184
    Yeon J. Short-term deformability of three-dimensional printable EVA-modified cementitious mortars Appl. Sci. 2019 9 19 4184 10.3390/app9194184
  43. [43] Ghally, E., Khalil, H., Ragab, R.A.A., Bakr, M., Evaluation the chemical and mechanical properties of EVA modified concrete, Egypt. J. Chem., 2022, 65(4): 403–410. 10.21608/ejchem.2022.117998.5320
    Ghally E. Khalil H. Ragab R.A.A. Bakr M. Evaluation the chemical and mechanical properties of EVA modified concrete Egypt. J. Chem. 2022 65 4 403 410 10.21608/ejchem.2022.117998.5320
  44. [44] Pattanayak, S., Bhowmick, T., Thermal characteristics of poly(ethylene vinyl acetate) from 80 to 300 K, Cryogenics, 1990, 30(9): 795–798. 10.1016/0011-2275(90)90277-J
    Pattanayak S. Bhowmick T. Thermal characteristics of poly(ethylene vinyl acetate) from 80 to 300 K Cryogenics 1990 30 9 795 798 10.1016/0011-2275(90)90277-J
  45. [45] Yang, Y., Liu, J., Liu, L., Li, J., Liu, Q., Chen, Z., et al., Quantifying the water saturation degree of cement-based materials by hydrogen nuclear magnetic resonance (1H NMR), Constr. Build. Mater., 2024, 438: 137340. 10.1016/j.conbuildmat.2024.137340
    Yang Y. Liu J. Liu L. Li J. Liu Q. Chen Z. Quantifying the water saturation degree of cement-based materials by hydrogen nuclear magnetic resonance (1H NMR) Constr. Build. Mater. 2024 438 137340 10.1016/j.conbuildmat.2024.137340
  46. [46] Wu, Z., Wong, H.S., Chen, C., Buenfeld, N.R., Anomalous water absorption in cement-based materials caused by drying shrinkage induced microcracks, Cem. Concr. Res., 2019, 115: 90–104. 10.1016/j.cemconres.2018.10.006
    Wu Z. Wong H.S. Chen C. Buenfeld N.R. Anomalous water absorption in cement-based materials caused by drying shrinkage induced microcracks Cem. Concr. Res. 2019 115 90 104 10.1016/j.cemconres.2018.10.006
  47. [47] Wang, Y., Li, L., An, M., Sun, Y., Yu, Z., Huang, H., Factors influencing the capillary water absorption characteristics of concrete and their relationship to pore structure, Appl. Sci., 2022, 12(4): 2211. 10.3390/app12042211
    Wang Y. Li L. An M. Sun Y. Yu Z. Huang H. Factors influencing the capillary water absorption characteristics of concrete and their relationship to pore structure Appl. Sci. 2022 12 4 2211 10.3390/app12042211
  48. [48] Tutkun, B., Yazıcı, H., Effect of absorption determining methods of superabsorbent polymers in cementitious environments on the fresh properties, Mater. Today: Proc., 2023, 81: 43–49. 10.1016/j.matpr.2022.11.403
    Tutkun B. Yazıcı H. Effect of absorption determining methods of superabsorbent polymers in cementitious environments on the fresh properties Mater. Today: Proc. 2023 81 43 49 10.1016/j.matpr.2022.11.403
  49. [49] Lanka, S.T., Moses, N.G.A., Suppiah, R.R., Maulianda, B.T., Physio-chemical interaction of Ethylene-Vinyl Acetate copolymer on bonding ability in the cementing material used for oil and gas well, Pet. Res., 2022, 7(3): 341–349. 10.1016/j.ptlrs.2021.10.003
    Lanka S.T. Moses N.G.A. Suppiah R.R. Maulianda B.T. Physio-chemical interaction of Ethylene-Vinyl Acetate copolymer on bonding ability in the cementing material used for oil and gas well Pet. Res. 2022 7 3 341 349 10.1016/j.ptlrs.2021.10.003
  50. [50] Shi, X., Cheng, J., Xu, L., Feng, T., Han, J., Zhang, P., et al., Study on the effect of WER and EVA on the performance and microstructure of cement mortars for a prefabricated residential floor, J. Build. Eng., 2022, 15: 104050. 10.1016/j.jobe.2022.104050
    Shi X. Cheng J. Xu L. Feng T. Han J. Zhang P. Study on the effect of WER and EVA on the performance and microstructure of cement mortars for a prefabricated residential floor J. Build. Eng. 2022 15 104050 10.1016/j.jobe.2022.104050
  51. [51] Silva, D.A., John, V.M., Ribeiro, J.L.D., Roman, H.R., Pore size distribution of hydrated cement pastes modified with polymers, Cem. Concr. Res., 2001, 31(8): 1177–1184. 10.1016/S0008-8846(01)00549-X
    Silva D.A. John V.M. Ribeiro J.L.D. Roman H.R. Pore size distribution of hydrated cement pastes modified with polymers Cem. Concr. Res. 2001 31 8 1177 1184 10.1016/S0008-8846(01)00549-X
  52. [52] Hou, S.H., Sun, G.C., Lu, D., Zhao, X., Fan, L., EVA enhanced cementitious materials based coatings for the improvement of steel reinforcement corrosion protection performance, J. Build. Eng., 2023, 15: 107080. 10.1016/j.jobe.2023.107080
    Hou S.H. Sun G.C. Lu D. Zhao X. Fan L. EVA enhanced cementitious materials based coatings for the improvement of steel reinforcement corrosion protection performance J. Build. Eng. 2023 15 107080 10.1016/j.jobe.2023.107080
  53. [53] Malik, M., Bhattacharyya, S.K, Barai, S.V., Temperature, porosity and strength relationship for fire affected concrete, Mater. Struct., 2022, 55(2): 72. 10.1617/s11527-022- 01898-9
    Malik M. Bhattacharyya S.K Barai S.V. Temperature, porosity and strength relationship for fire affected concrete Mater. Struct. 2022 55 2 72 10.1617/s11527-022- 01898-9
DOI: https://doi.org/10.2478/msp-2025-0021 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 87 - 100
Submitted on: Mar 27, 2025
|
Accepted on: Jun 29, 2025
|
Published on: Jun 30, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Zihao Li, Jean Jacques Kouadjo Tchekwagep, Shifeng Huang, Shoude Wang, Ning Ding, Herve Kouamo Tchakouté, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.